Community Development Department Comprehensive Planning Section 18400 Murdock Circle Port Charlotte, FL, 33948

PLANNED DEVELOPMENT REZONING Application Information

Application Submittal Requirements

- Supply one unbound copy of the Application Materials (see checklist below). Staff will have up to 5 working days following the application deadline day to review the application for completeness. If incomplete, the application will be returned with a description of the reasons why the application is incomplete. The applicant may resubmit the application any time prior to the next application deadline day.
- Once deemed complete, the applicant will be notified that the application has been logged-in. The applicant is then required to supply one electronic copy, in PDF format, of all documents. Additional copies of certain items will be required prior to the public hearing dates. *Do not* submit the additional copies to the Building and Growth Management Department until requested by a staff member of the department.
- If deemed complete, the application will be logged in and assigned to a P&Z and BCC hearing cycle (see attached Application Schedule). Staff will commence review.
 - The applicant is responsible for promptly providing any information that needs to be updated, modified, or newly submitted as part of the review; otherwise the petition may be continued to a later cycle or a recommendation of denial will be necessary.
- No additional changes may be made to any information in an application subsequent to one week before the hearing packet is due to be compiled for the Planning and Zoning Board members or the NOVUS Agenda item deadline for the Board of County Commissioners. The planner in charge of the petition will be able to inform the applicant of the final date.

Consistency with the Comprehensive Plan

The changes proposed by this application will be reviewed with regard to consistency with the Goals, Objectives, and Policies (GOPs) of the Smart Charlotte 2050 comprehensive plan. Inconsistency with Smart Charlotte will be a basis for a recommendation of denial by Staff.

The review will also be concerned with impacts to infrastructure (i.e. roads, water and sewer facilities, libraries, public buildings, parks, and schools), services (i.e. garbage collection, police protection, and fire/EMS service), the environment (i.e. impact to listed plant and animals species, soil content, erosion, generation of hazardous waste, water quality), and the potential for natural disasters (i.e. hurricanes and flooding).

Community Development Department Comprehensive Planning Section 18400 Murdock Circle Port Charlotte, FL, 33948

	<u>Ap</u>	plication Materials Checklist
	\Box	Completed Application form
	\Box	Survey and accurate legal description (including acreage), signed and sealed by a registered land surveyor
		• For unplatted property, one original boundary survey - one hard copy and one copy in AutoCAD format
		• For platted land, one original surveyor's sketch
	\square	Most current Title Insurance Policy or an Ownership and Encumbrance Report for subject property
		Notarized authorization from each owner, as applicable (Form A)
	\Box	Notarized authorization for agent to submit petition, as applicable (Form B)
I/A		A copy of any covenants, easements or restrictions that have been recorded for the subject site
	\Box	Environmental Assessment Report
	\Box	Traffic Impact Analysis
		• Hurricane Evacuation Study, as applicable
	u	Letters of availability of utility service from sanitary sewer and potable water utilities that would provide service to the site and <i>Estimated Potable Water and Sanitary Sewer Usage Report</i>
	Q	Archeological/Historical Memo indicating whether or not listed objects are located on the subject site • Archeological/Historical Survey, as applicable
	\Box	Narrative addressing rezoning standards of approval
	Q	All information required by Section 15 of the application, 'A' through 'K'
N/A	\Box	Adjacent property owners map and an electronic copy of the adjacent property owners list in text format (txt file) provided on disc.
	\Box	Affidavits A & B, signed and notarized
	u	Filing fee of \$4,540.00, with check made payable to the Charlotte County Board of County Commissioners, or CCBCC.
		Filing of \$2,590.00 for a Major Modification of a PD, with check made payable as noted above.

Additional Copies for Hearing Packet

10 copies each of the following when requested by department staff:

- any bound items
- any maps or other graphics sized larger than 11 X 17 (except surveys)
- any items in color

For Purposes of Public Hearing Presentation

Two views of the concept plan must be submitted to the County in an electronic format designed to fit on a PowerPoint slide; one view based against an off-white background, and one view presented as an overlay on a GIS aerial map of a scale to show adjacent properties. In order to make viewing of the PowerPoint concept plan easier, only the site plan, development standards, north arrow, and scale shall be portrayed. The concept (site) plan should be marked for easy reading:

- areas set aside for water retention should be colored blue
- areas set aside for Open Space should be colored green dark green for preservation and light green for other areas
- areas set aside for Public Space should be colored brown

ATTENTION

If you are submitting an application that, if approved, will increase the amount of density allowed to be developed on your property, read this notice.

FLU Policy 1.2.7 of Smart Charlotte County outlines those situations wherein the Transfer of Density Units program is applicable.

"The TDU program shall be used during the review and approval process for all plan amendments and rezonings that propose to increase the base density on land and street vacations that would result in an accumulation of acreage allowing development of new units of density; this requirement shall continue to apply to lands that have been annexed by the City of Punta Gorda."

Property may be exempted from the TDU program if located within a Revitalizing Neighborhood with an adopted Revitalization Plan. The exemption would need to be consistent with policies adopted into Smart Charlotte.

If not exempted, property must meet one of these requirements in order to be an acceptable Receiving Zone:

FLU Policy 1.2.10 TDU Receiving Zones

Receiving zones inside the Urban Service Area include lands within the following designations of FLUM Series Map #2: 2050 Framework:

- 1. Emerging Neighborhoods.
- 2. Maturing Neighborhoods.
- 3. Economic Corridors and Centers.
- 4. CRAs
- 5. Revitalizing Neighborhoods prior to adoption of a Revitalization Plan and also what may be required in accordance with a Revitalization Plan.

Receiving Zones within the Rural Service Area include lands within:

- 1. Rural Community Mixed Use areas.
- 2. The Rural Settlement Area Overlay District.

AND

Must not be in a prohibited Receiving Zone:

FLU Policy 1.2.11 Prohibited Receiving Zones

Density shall not be transferred into:

- 1. Lands within Managed Neighborhoods (FLUM Series Map #2).
- 2. Lands within the Resource Conservation and Preservation FLUM categories.
- 3. Land containing historical or archeological resources, or land deemed to contain environmentally sensitive resources; when a portion of a property contains resources, that area deemed not to contain resources may receive density if it meets one of the criteria of a receiving zone, a conservation easement will be required over the resource along with an undeveloped buffer of at least 100 feet. An historical structure that is to be integrated into a development will not need to be buffered.
- 4. Lands within the Prime Aquifer Recharge Area (FLUM Series Map #6).
- 5. Lands within the one-half mile setback of the Watershed Overlay District and Tippen Bay and Long Island Marsh (FLUM Series Map #4).
- 6. Land within a Public Water System Wellhead Protection Area (FLUM Series Map #7).
- 7. Land on a barrier island.

Community Development Department Comprehensive Planning Section 18400 Murdock Circle Port Charlotte, FL, 33948

CHARLOTTE COUNTY COMMUNITY DEVELOPMENT DEPARTMENT

APPLICATION for PLANNED DEVELOPMENT REZONING

Date Received:		Time Received	:
Data of Log in		Petition #:	
Date of Log-in:		Accela #:	
Receipt #:		Amount Paid:	
. PARTIES TO THE AF	PPLICATION		
	IBCC Developmen	, LLC	
	50 Central Avenue	Suite 980	
City: Sarasota	State: FL	Zip Code	_{e:} 34236
Phone Number: 941-9	916-5247	Fax Nun	nber:
Email Address: triple	enetinvestment@g	nail.com	
	= .		
1 (00.000 01.1280.000	t H. Berntsson		
	S. Access Road		
City: Englewood	State: FL	Zip Code	e: 34224
Thone Number.	27-1000 x5	Fax Nun	nber:
Email Address: rbernt	sson@bigwlaw.com		
Name of Engineer/Surveyo	or: Exceptional E Box 2980	igineering	
Maining Address.			
City: Fort Myers	State: FL	_	e: 33902
Phone Number: 239-789-8	377	Fax Nun	nber:
Email Address: jasonv	v@exceptionaleng	com	
Name of Property Owner (See attached list	if more than one propert	owner, attach a sej	parate sheet with a list of all owners):
Mailing Address:			
City:	State:	Zip Code	2 :
Phone Number:		Fax Nun	nber:
Email Address:			

2. PROPERTY INFORMATION

If more than one account number exists, attach a separate sheet listing all information required by this section

Property Account #: 402103126	004 and 402103126005	
Section: 3	Township: 40	Range: 21
Parcel/Lot #: 1-3	Block #:	Subdivision:
Total acreage or square feet of the p	roperty: 29.39+/- acres	

3. SURVEY:

- For unplatted property, provide one original boundary survey that is **signed and sealed** by a registered land surveyor and an accurate legal description (including acreage) of the property.
- For platted land, provide one original surveyor's sketch that is **signed and sealed** by a registered land surveyor and an accurate legal description (including acreage) of the property.
- **4. PROOF OF LAND OWNERSHIP:** Provide the most current *Title Insurance Policy* or an *Ownership and Encumbrance Report* on the subject property.

5. NOTARIZED AUTHORIZATION:

- If the applicant is not the owner of the property, a written, notarized authorization from each owner must be provided with this application use Form A, attached. Property owner authorization is required. If the property owner withdraws permission at any point during the review and approval process, the application is considered null and void.
- If an agent is submitting the application for the applicant authorization from the applicant is required use Form B, attached.
- **6. RESTRICTIONS:** Provide a copy of any covenants, easements or restrictions that have been recorded for the subject site.

7. EXISTING LAND USE DESIGNATIONS

Future Land Use Map (FLUM) designation(s)	Acreage
US 41 Mixed Use	29.39+/- acres
Zoning District(s)	Acreage
Zoning District(s) PD	Acreage 29.39+/- acres

8. APPLICANT'S PROPOSED CHANGE(S):

If the proposed change involves an increase in density, which of the Receiving Zone criteria does the property meet, or would this be an exemption consistent with a Revitalization Plan? Economic Corridor, and US 41 overlay allows up to 30 units per acre.

9. REASON FOR PROPOSED CHANGE(S):

To revise layout of commercial uses.

	Murdock Circle narlotte, FL, 33948
	CURRENT LAND USE OF SUBJECT PROPERTY (example: house, vacant land, barn, etc.): //acant
=	
1. S	URROUNDING LAND USES:
_	North: Hillsborough Blvd., Vacant City of North Port land.
	South: Commercial and vacant.
	East: Commercial and vacant.
	West: Commercial and vacant.

12. ENVIRONMENTAL ASSESSMENT: Waived by Zoning Official

- Provide an *Environmental Assessment Report*, conducted within one year or less from the date of submittal, that includes:
 - Maps and surveys of the subject site illustrating the existing land cover according to Level 3 of the FLUCCS
 - o Locations of listed flora and fauna species, if present.
 - o If any wetlands are identified on site, provide a survey showing delineations of any wetlands, acreages, and the wetland Category (ENV Policy 3.1.3) under which they fall.
 - o If the property is adjacent to any Federal, State, or County wildlife management areas, parks, preserves or reserves, supply a science-based analysis of possible impacts to the environmental resources of these lands and the manner in which these impacts can be eliminated. Where elimination is not possible, the analysis shall detail how these impacts can be reduced and mitigated.

13. INFRASTRUCTURE:

Community Development Department Comprehensive Planning Section

A. Roadway

i. List the roads or streets upon which vehicles may travel to gain access to the site (generally within ¼ mile radius):
 US 41, Hillsborough Blvd. and Cranberry Blvd.

ii. *Traffic Impact Analysis*: This study must be authored by a registered professional engineer in the State of Florida. Provide a study showing the impacts development of the subject site would have on the surrounding roadway network. Where traffic impacts reduce LOS below 'D' provide a proportionate fair share assessment for impacted roadways.

• Hurricane Evacuation Study: For any property that is even partially located in a Coastal High Hazard Area, or which generates trips wherein the majority of those trips would utilize a roadway that runs through a Coastal High Hazard Area, a Hurricane Evacuation Study must

accompany any Traffic Impact Analysis.

B. Potable Water and Sanitary Sewer

- i. Submit a letter from any water or sewer utilities that will be serving the subject site stating availability of utility service to the property.
- ii. Attach an *Estimated Potable Water and Sanitary Sewer Usage Report*: provide a report showing the gallons per day that may be generated by development of the subject site at the maximum buildout
- **14. HISTORICAL OR ARCHEOLOGICAL SITES:** When the property under review is within the area determined to contain potential historic and archeological resources by the Archaeological Predictive Model (depicted on SPAM Series Map #3), the applicant must submit an *Archeological/Historical Memo* indicating that a review of the National Register of Historic Places, the Florida Master Site File and the Local Historic Register (when available) has been performed and the results of that review. If the subject site contains any object listed in these resources, the applicant must provide an *Archeological/Historical Survey* performed by a professional archeologist licensed in the State of Florida.

15. REZONING NARRATIVE

Charlotte County Code Section 3-9-11(e) lists the following standards for approval. A narrative stating the applicant's justification for the rezoning based upon the following standards of approval is required:

- A. Whether the proposed change would be contrary to the Comprehensive Plan.
- B. The existing land use pattern in adjacent areas.
- C. The capacity of public facilities and services, including but not limited to schools, roads, recreational facilities, wastewater treatment, water supply, and stormwater drainage facilities.
- D. Whether the proposed change will adversely influence living conditions or property values in adjacent areas.
- E. Whether the proposed change will affect public safety.

16. CONCEPT PLAN and DEVELOPMENT INFORMATION: Submit the following information regarding the proposed project.

(All maps must contain title of the project, landowner of record, names of the representatives of the landowner of record, scale, date, and north arrow)

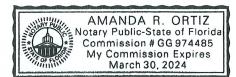
- A. Include a *General Location Map*.
- B. Include *Existing Features Map(s)* showing all streets, curb cuts, buildings, watercourses, easements, other important physical features, zoning designations and future land use map designations in the property and on adjacent lands.
- C. Include a *Concept Design Map* showing locations of structures, acreage, density, and intensity for each proposed land use; show points of access and traffic flow and road improvements; show buffers, landscaped areas, and open space.
- D. Supply tabulations of total gross acreage in the proposed development, the percentage of total acreage to be devoted to each proposed use, height, and intensity of use identified through Floor Area Ratio calculations and/or projected number of housing units proposed by dwelling type.
- E. Supply a phasing plan or general schedule of the development.
- F. Supply standards for height, open space, building density, and parking area.
- G. Include a narrative in which you cite specifically how this project meets the intent and goals of the Planned Development Zoning District, including any "community enhancements".

Community Development Department Comprehensive Planning Section 18400 Murdock Circle Port Charlotte, FL, 33948

- H. Show the general façade and overall architectural design scheme; explain building orientation, if applicable.
- I. Describe any Green Building or Low Impact Development (LID) design techniques that will be used.
- J. Supply a copy of any draft deed restrictions, protective covenants, and other statements or devices which will be used to control the use, development and maintenance of the land and improvements thereon, including those areas which are to be commonly owned and maintained.
- K. Supply any additional information identified at the preapplication conference, at concept approval, or requested by the Zoning Official or Building and Growth Management Director prior to submittal of the rezoning application.

18. ADJACENT PROPERTY OWNERS INFORMATION:

Provide an *electronic text file* (.txt) that includes the names and addresses of all property owners within 200 feet of the subject property (excluding street right-of-ways), and a map indicating which properties are included in the address list. The Adjacent Property Owner List must be based upon the latest available property records of the Property Appraiser's Office. The list shall include property owner's name, mailing address, and parcel(s) or lot(s) description or account number so each parcel can be referenced on the Adjacent Property Owner Map. Refer to the Geographic Information System Internet site for mapping and owner information at http://www.ccgis.com/. (Use a buffer of 250 feet or larger in order to account for right-of-ways, canals, etc.) Every property owner within 200 feet of every parcel of land involved will be notified of the schedule of public hearings


FORM A. PROPERTY OWNER AUTHORIZATION TO APPLICANT

I, the undersigned, being first duly sworn, do and which is the subject matter of the proposition.	epose and say that I am the owner of the property described sed hearing
I give authorization for JBCC Development, LLC	
REZONING.	
STATE OF Florida, COUNTY O	OF Migmi DAda
The foregoing instrument was acknowledged	d before me this OB day of July, 2022, by
William BRUCE, JR FUCCillo	who is personally known to me or has/have produced
DL# F 240 922 89 381-	as identification and who did/did not take an oath.
Mit .	X MM 3
Notary Public Signature	Signature of Owner WBF Florida Properties III, LLC
Alessansino Poietas de diverig	By William B Fuccillo, Jr. Manager
Notary Printed Signature	Printed Signature of Owner
	c/o Anthony J- Gargno, P.A.
Title	Address 8695 college Parkway, Suite 201
	City, State, Zip
Commission Code	City, State, Zip
	739-337-2280
2000 A 1000 A 10	Telephone Number
ALESSANDRO PORTES DE OLIVEIRA Notary Public - State of Florida	
Commission # GG 937694 OF FO. My Comm. Expires Dec 8, 2023 To Bonded through National Notary Assn.	
Donaca tili odgii nationat notali j 2000	

Community Development Department Comprehensive Planning Section 18400 Murdock Circle Port Charlotte, FL, 33948

FORM B. APPLICANT AUTHORIZATION TO AGENT

	depose and say that I am the applicant for the REZONING of
the property described and which is the sub I give authorization for Robert H. Berntsson	egect matter of the proposed hearing. to be my agent for this
application.	to be my agent for this
-FF	
STATE OF TAKE	OF Control
STATE OF Florida, COUNTY	or <u>shy as orac</u>
The foregoing instrument was acknowledge	ed before me this <u>28</u> day of <u>Tune</u> , 20 <u>22</u> , by
Clinton P. Conway	who is personally known to me or has/have produced
•	as identification and who did/did not take an oath.
amande R Oction	I Ch P. Co
Notary Public Signature	Signature of Applicant
Amanda R. Ortiz	Printed Signature of Applicant
Notary Printed Signature	Printed Signature of Applicant
	50 Central Ave Svite 980
Title	Address
Commission Code	Sarasota, FL 34236 City, State, Zip
Commission Code	
	941-916-5247 Telephone Number

AFFIDAVIT A

I, the undersigned, being first duly sworn, depose and say that I am the owner or agent of the property described and which is the subject matter of the proposed hearing; that all answers to the questions in this application, and all sketches, data and other supplementary matter attached to and made a part of the application are honest and true to the best of my knowledge and belief. I understand this application must be complete and accurate before the hearing can be advertised, and that if I am not the owner of the property I have attached a notarized authorization from the owner(s) to submit this application. I acknowledge that all items listed in the application must be submitted concurrent at the time the County accepts the application. I swear that the attached list of adjacent property owners is complete, including all property owners within 200 feet of the subject properties (excluding right-of-ways), that it is correct, providing addresses as listed in the County Tax Roll.

STATE OF Florida, COUNTY	OF Charlotte
The foregoing instrument was acknowled	ged before me this $\sqrt{2}$ day of $\sqrt{2}$, 20^{22} , by
Robert H. Berntsson	who is personally known to me or has/have produced
	as identification and who did/did not take an oath.
Margant Come	$\mathcal{L}(\mathcal{L}G_{2})$
Notary Public Signature	Signature of Applicant or Agent
	Robert H. Berntsson
Notary Printed Signature	Printed Signature of Applicant or Agent
	3195 S. Access Road
Title	Address
	Englewood, FI 34224
Commission Code	City, State, Zip
MARGARET CASOLE	941-627-1000 x5
Commission # GG 331842 Expires July 25, 2023 Bonded Thru Troy Fain Insurance 800-385-7019	Telephone Number

AFFIDAVIT B

The applicant/owner hereby acknowledges and agrees that any staff discussion about conditions of approval are preliminary only, and are not final, nor are they the specific conditions or demands required to gain approval of the application, unless the conditions or demands are actually included in writing in the final development order or the final denial determination or order.

STATE OF Florida, COUNTY C	OF Charlotte
The foregoing instrument was acknowledged	d before me this 12 day of 3 , 20 , by
Robert H. Berntsson	who is personally known to me or has/have produced
	as identification and who did/did not take an oath.
Mangart Carle	
Notary Public Signature	Signature of Applicant or Agent
	Robert H. Berntsson
Notary Printed Signature	Printed Signature of Applicant or Agent
	3195 S. Access Road
Title	Address
	Englewood, Fl 34224
Commission Code	City, State, Zip
MARGARET CASOLE Commission # GG 331842	941-627-1000 x5
Expires July 25, 2023 Ronded Thru Troy Fain Insurance 800-385-7019	Telephone Number

PROPERTY INFORMATION REPORT

Certified to: REAL ESTATE SERVICES

ORDER DATE:

July 8, 2022

SEARCH DATE: 30 years up to June 16, 2022

LEGAL DESCRIPTION

PARCEL I.D. NO.: 402103126004

A PORTION OF SECTION 3, TOWNSHIP 40 SOUTH, RANGE 21 EAST, CHARLOTTE COUNTY, FLORIDA, BEING FURTHER DESCRIBED AS FOLLOWS:

BEGINNING AT THE INTERSECTION OF THE EAST RIGHT-OF-WAY LINE OF CRANBERRY BOULEVARD (100' WIDE) AS SHOWN ON THE PLAT OF PORT CHARLOTTE SUBDIVISION SECTION 68, RECORDED IN PLAT BOOK 6, PAGE 6 OF THE PUBLIC RECORDS OF CHARLOTTE COUNTY, FLORIDA AND THE NORTH RIGHT-OF-WAY OF U.S. HIGHWAY NO. 41 (STATE ROAD NO. 45) TAMIAMI TRAIL AS DEPICTED ON FLORIDA DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY MAP SECTION 01010-2510 SAID POINT HAVING A STATE PLANE COORDINATE VALUE OF NORTHING 980962.4591 FEET AND EASTING 589862.3591 FEET; THENCE SOUTH 51°51'48" EAST ALONG THE NORTH RIGHT-OF-WAY LINE OF SAID U.S. HIGHWAY NO. 41, A DISTANCE OF 1354.52 FEET; THENCE NORTH 38°08'12" EAST, A DISTANCE OF 338.00 FEET: THENCE SOUTH 51°51'48" EAST, A DISTANCE OF 387.00 FEET; THENCE SOUTH 38°08'12" WEST, A DISTANCE OF 338.00 FEET TO THE NORTH RIGHT-OF-WAY OF U.S. HIGHWAY NO. 41; THENCE SOUTH 51°51'48" EAST ALONG SAID RIGHT-OF-WAY, A DISTANCE OF 60.00 FEET; THENCE NORTH 38°08'12" EAST, A DISTANCE OF 398.21 FEET TO THE BEGINNING OF A CIRCULAR CURVE TO THE LEFT HAVING AS ELEMENTS A RADIUS OF 630.00 FEET, A CENTRAL ANGLE OF 38°04'42". A CHORD LENGTH OF 411.03 FEET, AND A CHORD BEARING OF NORTH 19°05'51" EAST; THENCE ALONG THE ARC OF SAID CURVE, A DISTANCE OF 418.69 FEET TO THE END OF SAID CURVE; THENCE NORTH 00°20'46" EAST, A DISTANCE OF 571.41 FEET TO THE SOUTH RIGHT-OF-WAY LINE OF HILLSBOROUGH BOULEVARD AS DEDICATED IN OFFICIAL RECORDS BOOK 1254, PAGE 61, OF THE PUBLIC RECORDS OF CHARLOTTE COUNTY, FLORIDA; THENCE NORTH 89°56'30" WEST ALONG SAID RIGHT-OF-WAY, A DISTANCE OF 1010.63 FEET TO THE POINT OF CURVATURE OF A CIRCULAR CURVE TO THE RIGHT HAVING AS ELEMENTS A RADIUS OF 1640.00 FEET, A CENTRAL ANGLE OF 12°40'49", A CHORD LENGTH OF 362.22 FEET, AND A CHORD BEARING OF NORTH 83°36'05" WEST; THENCE ALONG THE ARC OF SAID CURVE AND SAID RIGHT-OF-WAY LINE, A DISTANCE OF 362.96 FEET, TO THE END OF SAID CURVE AND THE INTERSECTION WITH THE NORTH LINE OF SECTION 3, TOWNSHIP 40 SOUTH, RANGE 21 EAST; THENCE NORTH 89°56'30" WEST ALONG THE NORTH LINE OF SAID SECTION 3, A DISTANCE OF 273.91 FEET TO A POINT ON THE EAST RIGHT-OF- WAY OF CRANBERRY BOULEVARD, SAID POINT BEING A POINT ON A CURVE TO THE RIGHT AS ELEMENTS A RADIUS OF 550.00 FEET, A CENTRAL ANGLE OF 04°46'58", A CHORD LENGTH OF 45.90 FEET, AND A CHORD BEARING OF SOUTH 35°44'43" WEST; THENCE ALONG THE ARC OF SAID CURVE AND SAID RIGHT-OF-WAY LINE, A DISTANCE OF 45.91 FEET TO THE POINT OF TANGENCY; THENCE SOUTH 38°08'12" WEST ALONG SAID RIGHT-OF-WAY, A DISTANCE OF 209.69 FEET TO THE POINT OF BEGINNING.

APPARENT TITLE HOLDER & ADDRESS OF RECORD:

WBF FLORIDA PROPERTIES III, LLC, a Florida limited liability company

ADDRESS: 10524 US RT 11 ADAMS, NY 13605

This is to certify that the legal description and the above information is correct as required under Chapter 197 Florida Statutes. This report is not title insurance. Pursuant to s. 627.7843, Florida Statutes, the maximum liability of the issuer of this property information report for errors or omissions in this property information report is limited to the amount paid for this property information report, and is further limited to the person(s) expressly identified by name in the property information report as the recipient(s) of the property information report.

WIDEIKIS, BENEDICT & BERNTSSON LLC 3195 S. ACCESS ROAD ENGLEWOOD, FLORIDA 34224

Phone: 941-627-1000 Fax 941-255-0684

THE BIG W LAW FIRM

Countersigned:

By:

Robert H. Berntsson

Date: July 8, 2022

PROPERTY INFORMATION REPORT

Certified to: Charlotte County

ORDER DATE: April 19, 2024 SEARCH DATE: 30 years up to June 1st, 2023

LEGAL DESCRIPTION: See Exhibit "A"

PARCEL I.D. NO.: 402103126005, 402103126004

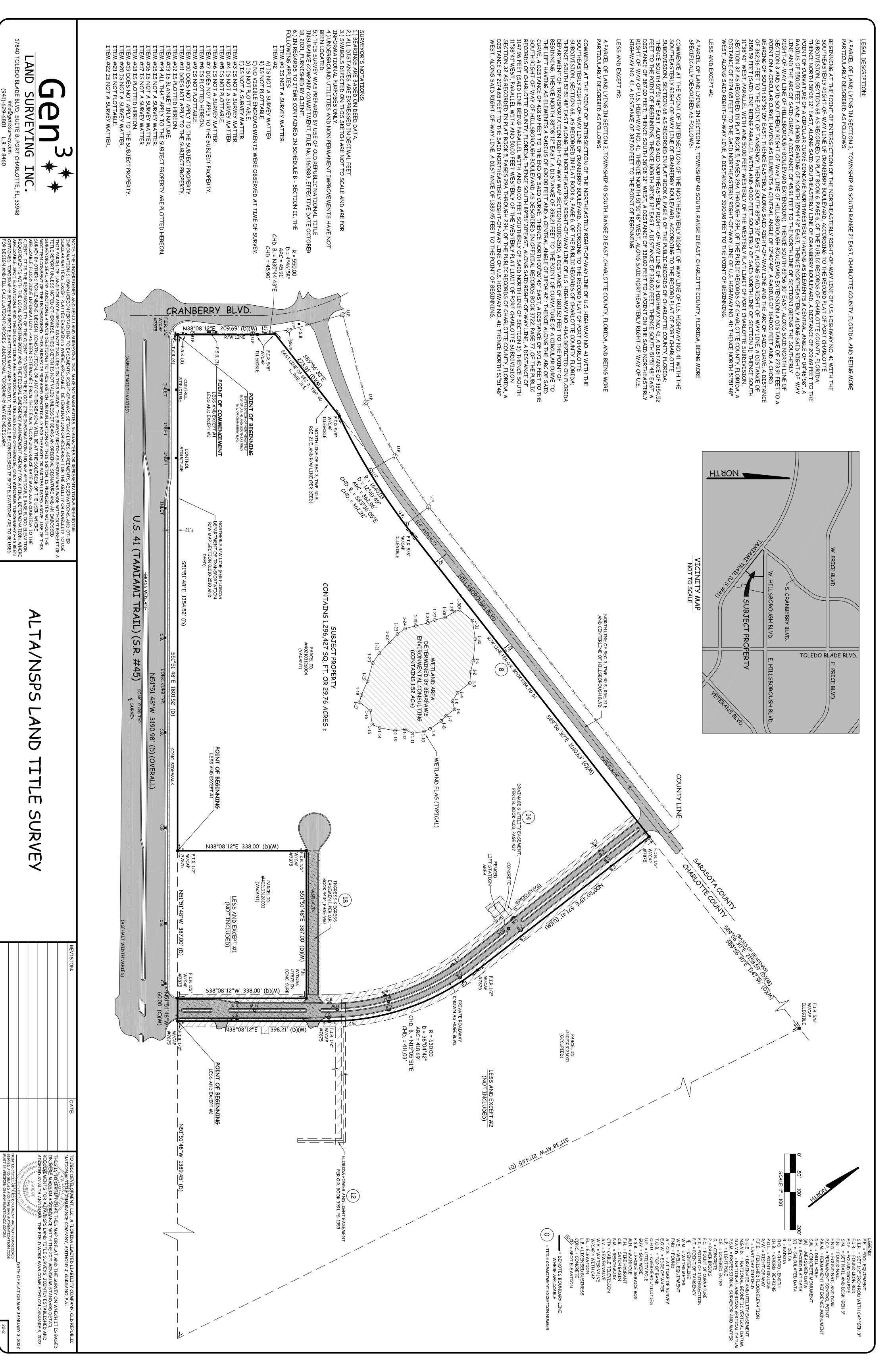
APPARENT TITLE HOLDER & ADDRESS OF RECORD:

CHARLOTTE HARBOR RESIDENCES LLC, A DELAWARE LIMITED LIABILITY COMPANY (AS TO PARCEL 1), and, as disclosed in the Public Records, since January 29, 2024; AND JBCC CRANBERRY & 41, LLC, A FLORIDA LIMITED LIABILITY COMPANY (AS TO PARCEL 2)

AND SAID PROPERTY IS SUBJECT TO THE FOLLOWING ENCUMBRANCES, IF ANY:

- 1. Mortgage, Assignment of Leases and Security Agreement, dated January 25, 2024, given by Charlotte Harbor Residences, LLC, a Delaware limited liability company, in favor of Pinnacle Bank, a Tennessee bank, to secure the original principal amount of \$52,552,000.00, as recorded on January 29, 2024, in Official Records Instrument No. 2024-3363272, of the Public Records of Charlotte County, Florida; (as to Parcel 1) and
 - a. UCC-1 Financing Statement in favor of Pinnacle Bank, as recorded on January 29, 2024, in Official Records Instrument No. 2024-3363274, of the Public Records of Charlotte County, Florida. (as to Parcel 1).
- 2. UCC-1 Financing Statement in favor of Pinnacle Bank, as recorded on February 6, 2024, in Official Records Instrument No. 2024-3366359, of the Public Records of Charlotte County, Florida.
- 3. Notice of commencement recorded on January 31, 2024 in Official Records Instrument Number 2024-3364538.
- 4. Mortgage, Assignment of Rents and Leases, Security Agreement and Fixture Filing, dated February 27, 2024, given by JBCC Cranberry & 41 LLC, a Florida limited liability company, in favor of First Horizon Bank, a Tennessee banking corporation to secure the original principal amount of \$3,600,000.00, as recorded on February 28, 2024, in Official Records Instrument No. 2024-3374479, in the Public Records of Charlotte County, Florida. (as to Parcel 2);
 - a. -1 Financing Statement in favor of First Horizon Bank, as recorded on February 28, 2024, in Official Records Instrument No. 2024-3374480, of the Public Records of Charlotte County, Florida. (as to Parcel 2)
- 5. Notice of commencement recorded on March 5, 2024 in Official Records Instrument Number 2024-3377317.
- 6.Right of Way Agreement recorded in Deed Book 27, Page 280, of the Public Records of Charlotte County, Florida.
- 7.Ordinance No. 89-72, recorded in Official Records Book 1069, Page 2017, of the Public Records of Charlotte County, Florida.
- 8. Resolution No. 92-279, recorded in Official Records Book 1254, Page 61, of the Public Records of Charlotte County, Florida.
- 9.Resolution No. 2014-122, recorded in Official Records Book 3876, Page 1266, of the Public Records of Charlotte County, Florida.
- 10.Perpetual Easement to State of Florida, Department of Transportation, as contained in Order of Taking recorded in Official Records Book 3991, Page 1902, of the Public Records of Charlotte County, Florida.
- 11. Easement to Florida Power & Light Company, recorded in Official Records Book 3991, Page 1953, of the Public Records of Charlotte County, Florida.
- 12. Charlotte County Utility Agreement recorded in Official Records Book 4020, Page 561, of the Public Records of Charlotte County, Florida.

- 13.Easement for Water and/or Wastewater Utilities, recorded in Official Records Book 4103, Page 437, of the Public Records of Charlotte County, Florida.
- 14. Ordinance No. 2019-011, recorded in Official Records Book 4430, Page 512, of the Public Records of Charlotte County, Florida.
- 15.Restrictive Covenant recorded in Official Records Book 4434, Page 949, of the Public Records of Charlotte County, Florida.
- 16. Cross Access, Utilities and Drainage Easement and Signage Agreement recorded in Official Records Book 4434, Page 960, of the Public Records of Charlotte County, Florida.
- 17. Declaration of Cross Access, Utilities, Drainage and Signage Easements and Covenants Agreement recorded in Official Records Book 4721, Page 2127, of the Public Records of Charlotte County, Florida.
- 18.Terms and conditions of the Ordinance Number 2023-008, by the Board of County Commissioners for Charlotte County, Florida, amending the Charlotte County Flum Series Map #1, as recorded on March 1, 2023, in Official Records Instrument No. 2023-3227888, of the Public Records of Charlotte County, Florida.
- 19.Terms and conditions of the Ordinance Number 2023-009, by the Board of County Commissioners for Charlotte County, Florida, amending the Charlotte County Zoning Atlas, as recorded on March 1, 2023, in Official Records Instrument No. 2023-3227889, of the Public Records of Charlotte County, Florida
- 20.Terms and conditions of the Resolution Number 2024-014, by the Board of County Commissioners of Charlotte County, Florida, for Site Plan Approval for Livano Charlotte Harbor, recorded on January 24, 2024, in Official Records Instrument No. 2024-3362003, of the Public Records of Charlotte County, Florida.
- 21.Terms and conditions of the Resolution Number 2023-138, by the Board of County Commissioners of Charlotte County, Florida, for transfer of 340 Density Credits, recorded on August 2, 2023, in Official Records Instrument No. 2023-3287574, of the Public Records of Charlotte County, Florida.
- 22.Declaration of Covenants, Restrictions and Easements Agreement for Cranberry Commons, dated January 25, 2024, by JBCC Cranberry & 41 LLC, a Florida limited liability company, as recorded on January 26, 2024, in Official Records Instrument No. 2024-3362978, of the Public Records of Charlotte County, Florida; Restrictions, covenants, conditions and easements, which include provisions for A. an easement on the land, B. a lien for liquidated damages, and C. a private charge or assessments
- 23. Assignment and Assumption of TDU Credits, dated January 25, 2024, by and between JBCC Cranberry & 41, LLC, a Florida limited liability company, in favor of Charlotte Harbor Residences LLC, a Delaware limited liability company, as recorded on January 29, 2024, in Official Records Instrument No. 2024-3363271, of the Public Records of Charlotte County, Florida.


This is to certify that the legal description and the above information is correct as required under Chapter 197 Florida Statutes. This report is not title insurance. Pursuant to s. 627.7843, Florida Statutes, the maximum liability of the issuer of this property information report for errors or omissions in this property information report is limited to the amount paid for this property information report, and is further limited to the person(s) expressly identified by name in the property information report as the recipient(s) of the property information report.

WIDEIKIS, BENEDICT & BERNTSSON LLC 3195 S. ACCESS ROAD ENGLEWOOD, FLORIDA 34224 Phone: 941-627-1000 Fax 941-255-0684 THE BIG W LAW FIRM

Countersigned:

By: Robert 74. Berutsson Date: April 19, 2024

Robert H. Berntsson

Updated Traffic Impact Study For Submittal to FDOT

Cranberry Commons Charlotte County, Florida

Section 01010000 Milepost 25.513 to 25.859

Prepared by:

Kimley-Horn and Associates, Inc. Tampa, Florida

©Kimley-Horn and Associates, Inc. Updated March 2025

Updated Traffic Impact Study For Submittal to FDOT

Cranberry Commons Charlotte County, Florida

Section 01010000 Milepost 25.513 to 25.859

Prepared by:

Kimley-Horn and Associates, Inc. Tampa, Florida

©Kimley-Horn and Associates, Inc. Updated March 2025

Christopher Hatton, P.E. PE Number: 48905

Date

The entirety of this document, including text and images, is property of Kimley-Horn and Associates, Inc., protected under U.S. copyright law. Copyright © 2025 Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

	<u>Page</u>
NTRODUCTION	1
PROJECT TRAFFIC	4
Proposed Land UseTrip Generation	4
TRIP DISTRIBUTION AND ASSIGNMENT	
STUDY AREA DETERMINATION	10
EXISTING TRAFFIC CONDITIONS	11
FUTURE TRAFFIC VOLUMES	14
FUTURE BACKGROUND TRAFFIC CONDITIONS	
FUTURE TOTAL TRAFFIC CONDITIONS	
TURN LANE ANALYSIS	21
MULTIMODAL ANALYSIS	23
SAFETY ANALYSIS	26
CONCLUSION	32

LIST OF FIGURES

		<u>Page</u>
Figure 1:	Project Location Map	2
Figure 2:	Net New Project Trip Distribution	7
Figure 3:	Pass-By Project Trip Distribution	8
Figure 4:	A.M. and P.M. Peak-Hour Project Traffic	9
Figure 5:	2025 A.M. and P.M. Peak-Hour Peak Season Existing Traffic	13
Figure 6:	2026 A.M. and P.M. Peak-Hour Background Traffic	15
Figure 7:	2026 A.M. and P.M. Peak-Hour Total Traffic	16
Figure 8:	Multimodal Study Area Map	25
Figure 9:	US 41 & S. Cranberry Boulevard Crash Diagram	27
Figure 10:	S. Cranberry Boulevard & Hillsborough Boulevard Crash Diagram	29
Figure 11:	US 41 & Huge Boulevard Crash Diagram	31

LIST OF TABLES

	<u>Page</u>
Table 1: A.M. Peak-Hour Trip Generation	6
Table 2: P.M. Peak-Hour Trip Generation	6
Table 3: 2025 Existing A.M. Peak-Hour Intersection Conditions	12
Table 4: 2025 Existing P.M. Peak-Hour Intersection Conditions	12
Table 5: 2026 Background A.M. Peak-Hour Intersection Conditions	18
Table 6: 2026 Background P.M. Peak-Hour Intersection Conditions	18
Table 7: 2026 Buildout A.M. Peak-Hour Intersection Conditions	20
Table 8: 2026 Buildout P.M. Peak-Hour Intersection Conditions	20
Table 9: US 41 & Huge Boulevard Turn Lane Analysis	22
Table 10: US 41 & S. Cranberry Boulevard Turn Lane Analysis	23
Table 11: Multimodal Trip Generation Analysis	24
Table 12: US 41 & S. Cranberry Boulevard Crash Summary	26
Table 13: S. Cranberry Boulevard & Hillsborough Boulevard Crash Summary	28
Table 14: US 41 & Huge Boulevard Crash Summary	30

LIST OF APPENDICES

APPENDIX A:	Conceptual Site Plan and Trip Generation Documentation
APPENDIX B:	FSUTMS Model Output
ADDENIDIV C.	Days Turning Massament Counts and Days Cooper Footon D

APPENDIX C: Raw Turning Movement Counts and Peak Season Factor Report

APPENDIX D: Intersection Analyses Worksheets

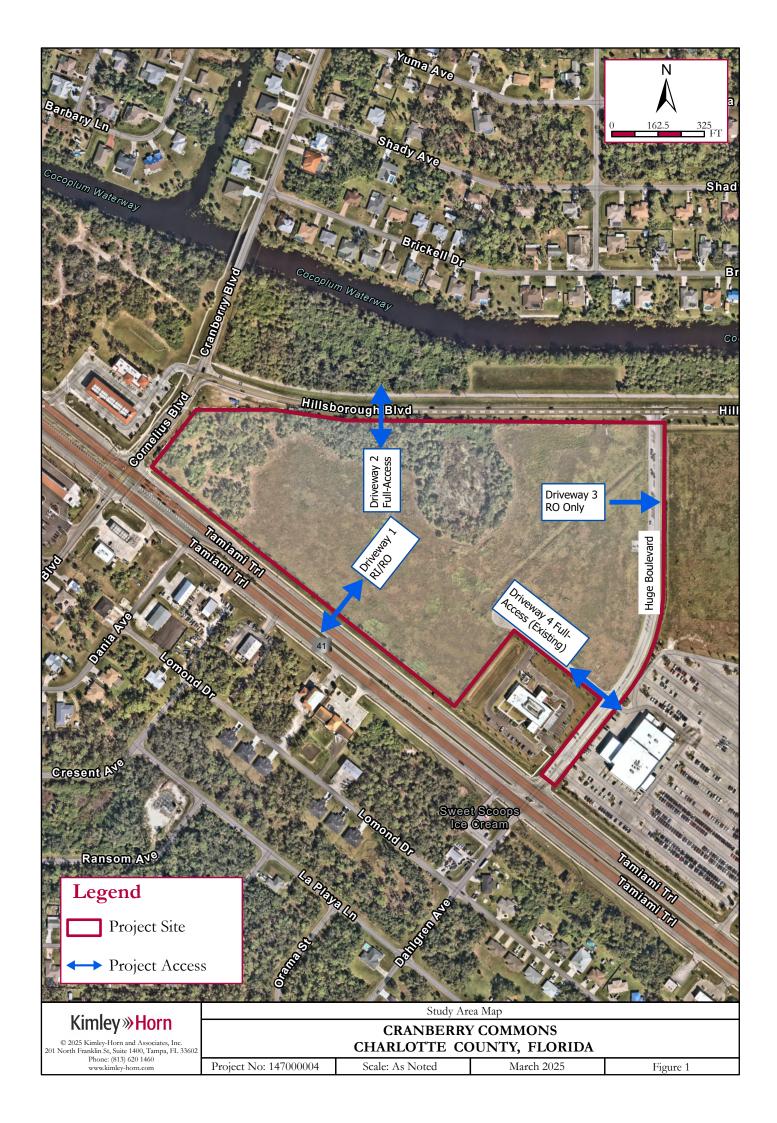
APPENDIX E: Growth Rate Calculations

APPENDIX F: Volume Development Intersection Worksheets

APPENDIX G: Roundabout Plans

APPENDIX H: Turn Lane Documentation

INTRODUCTION


Based upon the Pre-Application Meeting held with the Florida Department of Transportation (FDOT), Charlotte County, and the City of North Port on February 15, 2022, the latest comments from FDOT dated October 16, 2024, and subsequent discussions with FDOT, Charlotte County, and City of North Port on November 13, 2024, and January 31, 2025, this updated Traffic Impact Study (TIS) has been updated and is provided for the proposed Cranberry Commons development located at the northeast quadrant of US 41 & South Cranberry Boulevard in Charlotte County, Florida. US 41 is an access class 3 roadway with a context classification of C3C-Suburban Commercial and a posted speed limit of 45 mph and 50 mph in the vicinity of the project. The general site location map is provided in Figure 1. The project has been under construction since 2024 and buildout is expected in 2026. The existing site is proposed to be a mixed-use site to consist of up to the following development:

- 340 multi-family housing mid-rise units
- 7,762 square feet of restaurant
- 5,433 square feet of fast-food restaurant with drive-through
- 5,231 square feet (1 tunnel) of car wash
- 10,000 square feet of retail

As shown in the conceptual site plan in Appendix A, access to the site is provided through the following access connections:

- Project Driveway 1: Proposed right-in/right-out only connection along US 41
- Project Driveway 2: Proposed full-access connection along Hillsborough Boulevard
- Project Driveway 3: Proposed egress-only connection along Huge Boulevard (Northern)
- Project Driveway 4: Existing full-access connection along Huge Boulevard (Southern)

This report identifies the estimated trip generation potential of the proposed mixed-use development and analyzes the anticipated traffic impacts on the study area intersections and proposed project driveway along US 41.

In general, the following procedural steps were undertaken in this updated Traffic Impact Study (TIS):

- A pre-application meeting was held with the FDOT, Charlotte County, and the City of North Port on February 15, 2022;
- Traffic volumes anticipated to be generated by the proposed development were estimated using the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*, 11th Edition;
- Project traffic was distributed and assigned to the public roadway network based upon the distribution reflected from the results of a select zone analysis using the Florida Standard Urban Transportation Modeling Structure (FSUTMS) District One Regional Planning Model (D1RPM);
- Existing a.m. and p.m. peak-hour traffic volumes in the study area were collected in 2025 and adjusted to reflect peak season volumes using the Florida Department of Transportation's peak season conversion factor (PSCF), and were used as part of future background volumes;
- Background (non-project) traffic volumes consist of existing traffic grown by 2.0%;
- Intersection analyses within the study area for existing and future scenarios were completed using Synchro version 11; and
- Turn lane warrant thresholds were reviewed to determine the need for an exclusive turn lane at the proposed right-in/right-out only project driveway along US 41.
- A meeting was held on November 13, 2024 with FDOT staff.
- A meeting was held on January 31, 2025, with Charlotte County, City of North Port, and FDOT.

PROJECT TRAFFIC

Project traffic used in this analysis is defined as the vehicle trips expected to be generated by the proposed mixed-use development. These trips were distributed and assigned throughout the study area roadway network.

Proposed Land Use

The project site is located in the northeast quadrant of US 41 & South Cranberry Boulevard in Charlotte County, Florida. The project has been under construction since 2024. It is anticipated to be built-out by 2026 and is proposed to consist of up to the following development:

- 340 multi-family housing mid-rise units
- 7,762 square feet of restaurant
- 5,433 square feet of fast-food restaurant with drive-through
- 5,231 square feet (1 tunnel) of car wash
- 10,000 square feet of retail

As shown in the conceptual site plan in Appendix A, access to the site is provided through the following access connections:

- Project Driveway 1: Proposed right-in/right-out only connection along US 41
- Project Driveway 2: Proposed full-access connection along Hillsborough Boulevard
- Project Driveway 3: Proposed egress-only connection along Huge Boulevard (Northern)
- Project Driveway 4: Existing full-access connection along Huge Boulevard (Southern)

Cranberry Commons Page 4 Updated March 2025

Trip Generation

Trip generation for the proposed mixed-use development was based on the Institute of Transportation Engineer's (ITE) *Trip Generation Manual*, 11th Edition, for the following land use codes (LUC):

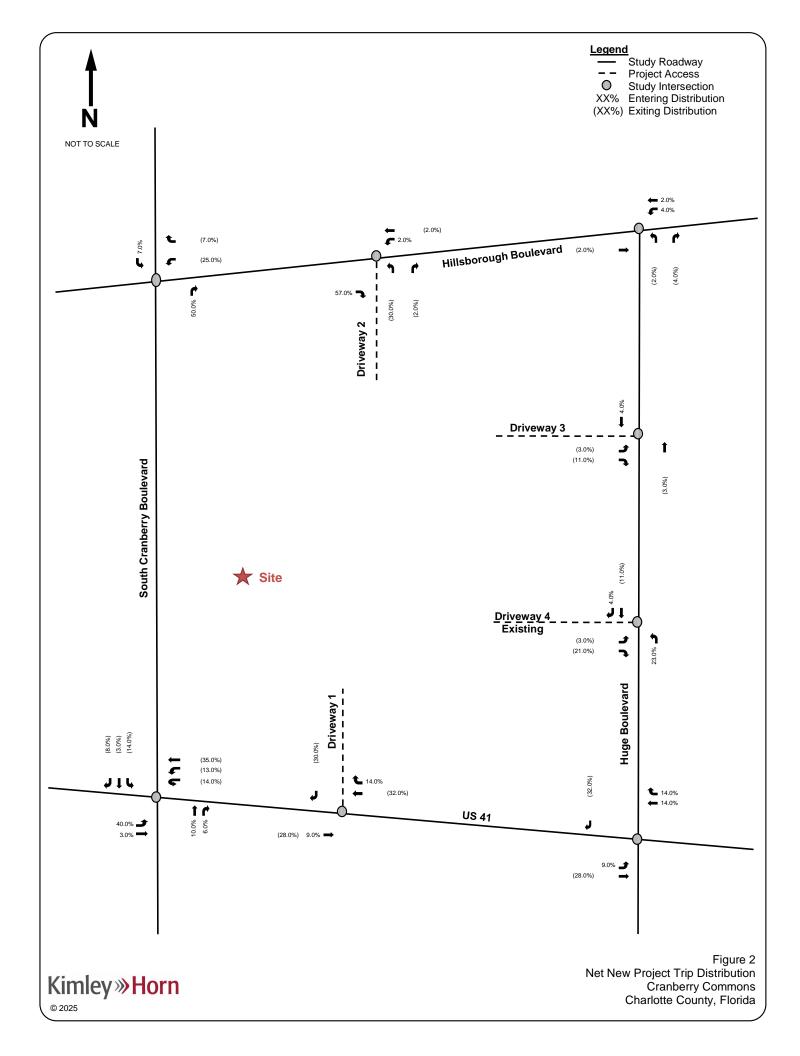
- LUC 221 (Multi-Family Housing (Mid-Rise) units)
- LUC 822 (Strip Retail Plaza (<40k))
- LUC 932 (High-Turnover (Sit-Down) Restaurant)
- LUC 934 (Fast-Food Restaurant with Drive-Through Window)
- LUC 948 (Automated Car Wash)

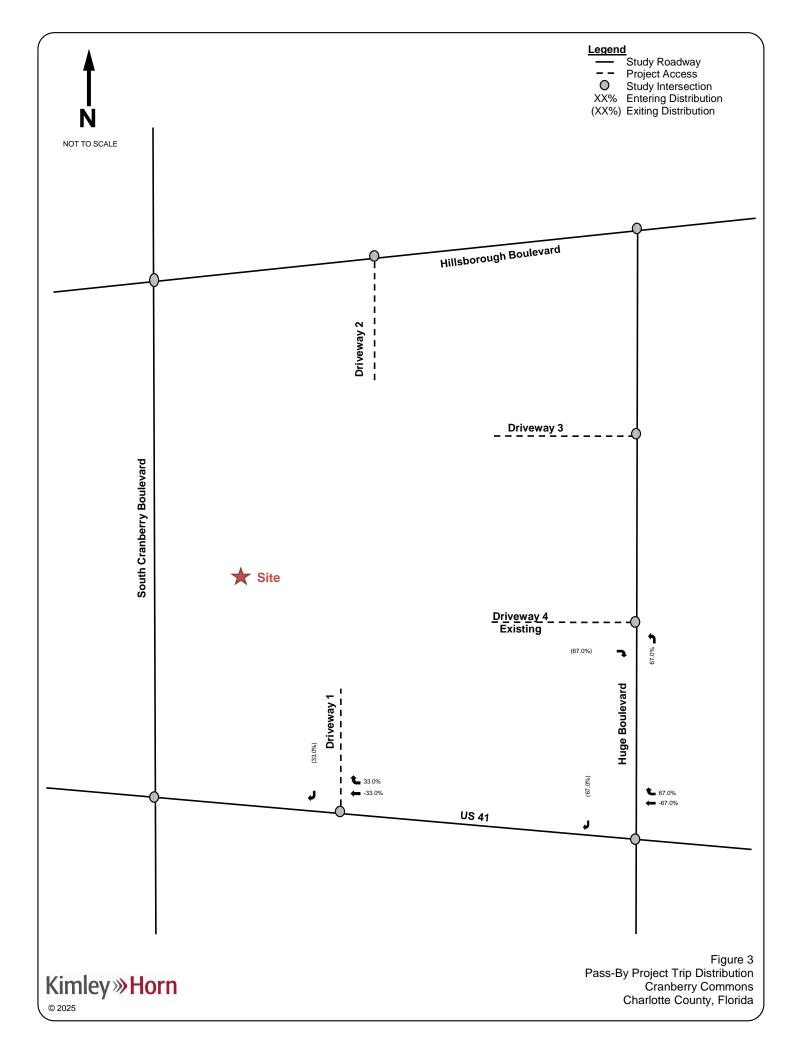
Pass-by and Internal capture rates based upon the methodologies outlined in the *ITE's Trip Generation Handbook*, 3rd edition, were utilized based upon the retail and mixed-use nature of the site. As identified in Table 1 and Table 2, the proposed mixed-use development is anticipated to generate 390 net, new a.m. peak-hour trips (166 entering/224 exiting) and 288 net, new p.m. peak-hour trips (170 entering/118 exiting). Daily trip generation and internal capture worksheets are provided in Appendix A.

Trip Distribution and Assignment

Project traffic attributed to the development was distributed to the adjacent roadway network from the project site. Trip distribution and assignment was based upon the results of a select zone analysis using the FSUTMS District One Regional Planning Model (D1RPM). Project trips were manually assigned at the proposed project driveways. The FSUTMS model output is provided in Appendix B.

The net-new and pass-by project distribution are shown in Figure 2 and Figure 3, respectively. The a.m. and p.m. peak-hour project trips are shown in Figure 4.




Table 1: A.M. Peak-Hour Trip Generation

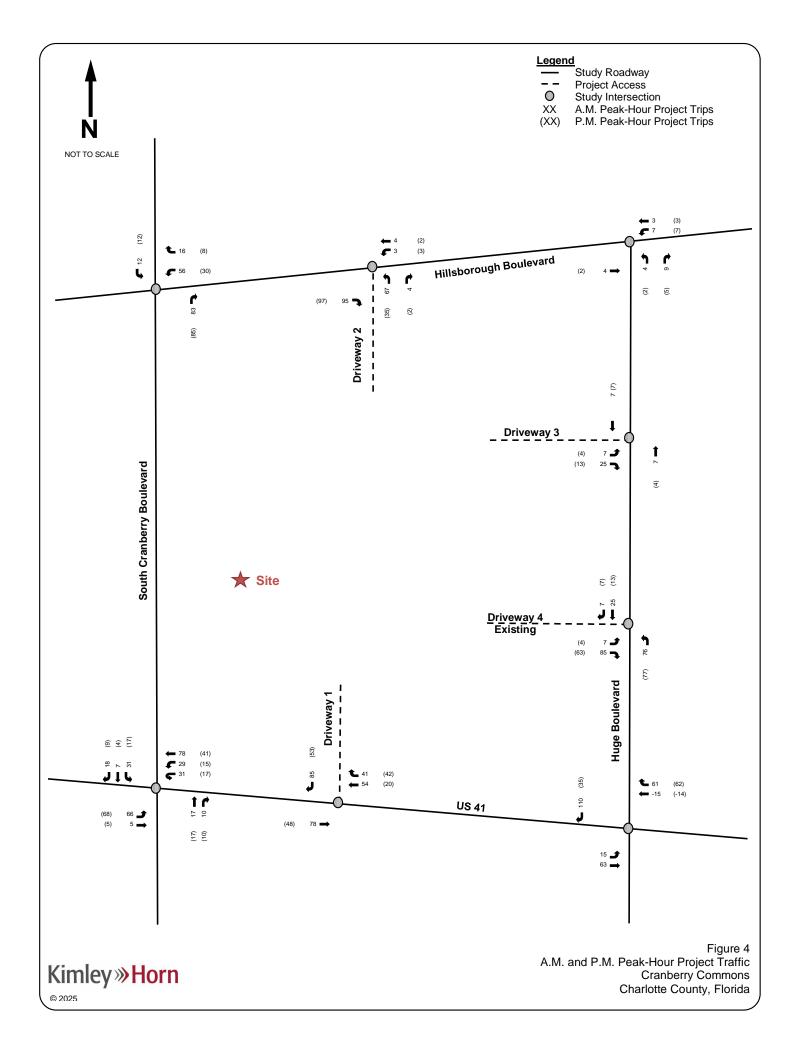

ITE TRIP GENERATION CHARACTERISTICS					DIRECTIONAL DISTRIBUTION		GROSS TRIPS		INTERNAL CAPTURE		TOTAL EXTERNAL TRIPS			PASS-BY CAPTURE		NET NEW EXTERNAL TRIPS			
Land Use	ITE Edition	ITE Code	Scale	ITE Units	Per	cent Out	ln	Out	Total	Percent	IC Trips	In	Out	Total	Percent	PB Trips	ln	Out	Total
Multifamily Housing Mid-Rise	11	221	340	DU	23%	77%	32	106	138	18.1%	24	20	94	114	0.0%	0	20	94	114
Strip Retail Plaza (<40k)	11	822	10	KSF	60%	40%	14	10	24	16.7%	4	12	8	20	0.0%	0	12	8	20
High-Turnover (Sit-Down) Restaurant	11	932	7.762	KSF	55%	45%	41	33	74	7.9%	6	38	30	68	0.0%	0	38	30	68
Fast-Food Restaurant with Drive-Through Window	11	934	5.433	KSF	51%	49%	123	119	242	7.9%	20	113	109	222	50.0%	112	57	53	110
Automated Car Wash	11	948	1	TUNNEL	50%	50%	39	39	78	0.0%	0	39	39	78	0.0%	0	39	39	78
						Total:	249	307	556	-	54	222	280	502	-	112	166	224	390

Table 2: P.M. Peak-Hour Trip Generation

ITE TRIP GENERATION CHARACTERISTICS					DIRECT		GROSS TRIPS			INTEI CAP1		EXT	TOTAL ERNAL TI	RIPS	PASS-BY CAPTURE		NET NEW EXTERNAL TRIPS		
Land Use	ITE Edition	ITE Code	Scale	ITE Units	Perd In	cent Out	ln	Out	Total	Percent	IC Trips	In	Out	Total	Percent	PB Trips	ln	Out	Total
Multifamily Housing Mid-Rise	11	221	340	DU	61%	39%	81	52	133	27.1%	36	63	34	97	0.0%	0	63	34	97
Strip Retail Plaza (<40k)	11	822	10	KSF	50%	50%	33	33	66	59.1%	40	13	13	26	40.0%	10	8	8	16
High-Turnover (Sit-Down) Restaurant	11	932	7.762	KSF	61%	39%	43	27	70	20.5%	14	36	20	56	43.0%	24	24	8	32
Fast-Food Restaurant with Drive-Through Window	11	934	5.433	KSF	52%	48%	93	86	179	20.5%	36	75	68	143	55.0%	78	36	29	65
Automated Car Wash	11	948	1	TUNNEL	50%	50%	39	39	78	0.0%	0	39	39	78	0.0%	0	39	39	78
						Total:	289	237	526	-	126	226	174	400	-	112	170	118	288

STUDY AREA DETERMINATION

Based upon the Pre-Application Meeting held on February 15, 2022 with the FDOT, Charlotte County, and City of North Port staff, and the latest comments from FDOT dated October 16, 2024, the following study area intersections were included in the analysis:

- US 41 & S. Cranberry Boulevard
- US 41 & Huge Boulevard
- Hillsborough Boulevard & S. Cranberry Boulevard
- US 41 & Project Driveway 1

The study area intersections were analyzed for a volume-to-capacity ratio (v/c) of less than one (1.0) for each lane approach during the a.m. and p.m. peak hours for existing, background, and total buildout conditions. Based on FDOT comments from October 16, 2024, delay values have also been included. For the purposes of this study, at the two (2) US 41 intersections, northbound and southbound approaches are along US 41 and eastbound and westbound approaches are along side streets. At the S. Cranberry Boulevard & Hillsborough Boulevard intersection, northbound and southbound approaches are along S. Cranberry Boulevard and eastbound and westbound approaches are along Hillsborough Boulevard.

Additionally, Project Driveway 1 (right-in/right-out only connection along US 41) was reviewed for exclusive turn lane warrant thresholds.

Cranberry Commons Page 10 Updated March 2025

EXISTING TRAFFIC CONDITIONS

Existing traffic conditions were evaluated within the study network. The procedures used in this analysis are detailed below.

Updated vehicle turning movement volume counts were collected at the study area intersections on February 19, 2025 during the a.m. peak period (7:00 a.m. to 9:00 a.m.) and p.m. peak period (4:00 p.m. to 6:00 p.m.) to quantify existing conditions. Although the peak season conversion factor (PSCF) for the week of the counts was 0.97, a PSCF of 1.0 was used to provide a conservative analysis. The raw turning movement counts and peak season factors are provided in Appendix C. The a.m. and p.m. peak-hour peak season existing traffic volumes are illustrated in Figure 5.

Existing Conditions Intersection Analysis

Using the peak-hour peak season existing traffic volumes identified in Figure 5, an intersection analysis was conducted for the study area intersections. The intersection analysis was performed using *Synchro* version 12. As a part of this analysis, existing lane geometry and traffic controls were used in the evaluation of the study area intersection.

The results of the existing conditions intersection analysis are summarized in Table 3 and Table 4 and indicate that the study area intersections currently operate acceptably with a volume-to-capacity (v/c) ratio of less than 1.0 for all lane approaches during the a.m. and p.m. peak-hours except westbound left/through lane at the S. Cranberry Boulevard & Hillsborough Boulevard intersection. Synchro output worksheets of the existing conditions intersection analysis are provided in Appendix D.

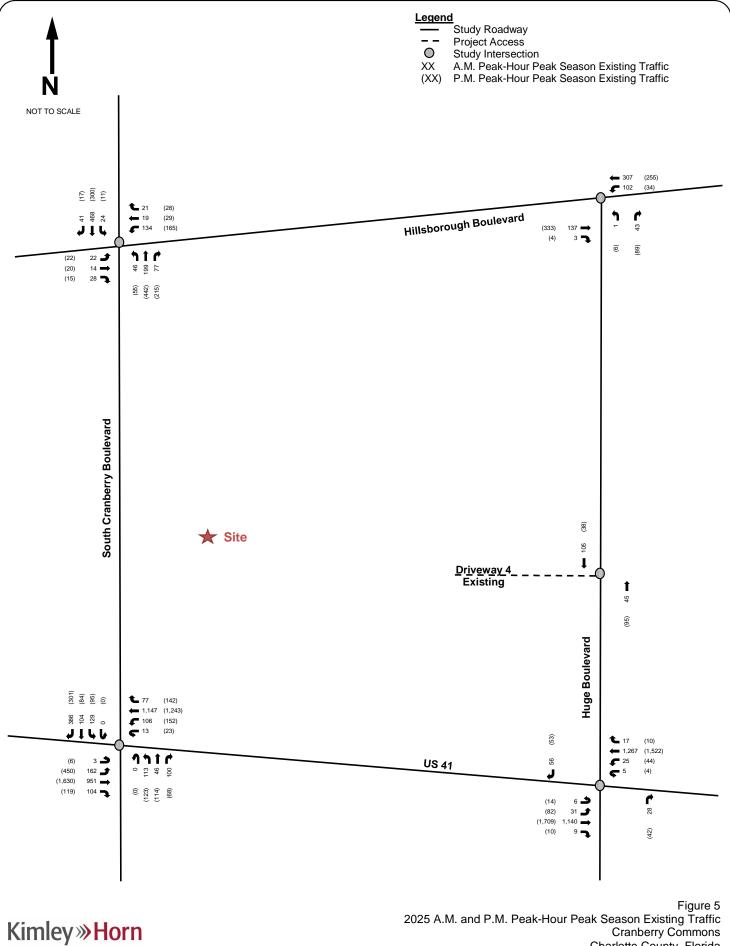
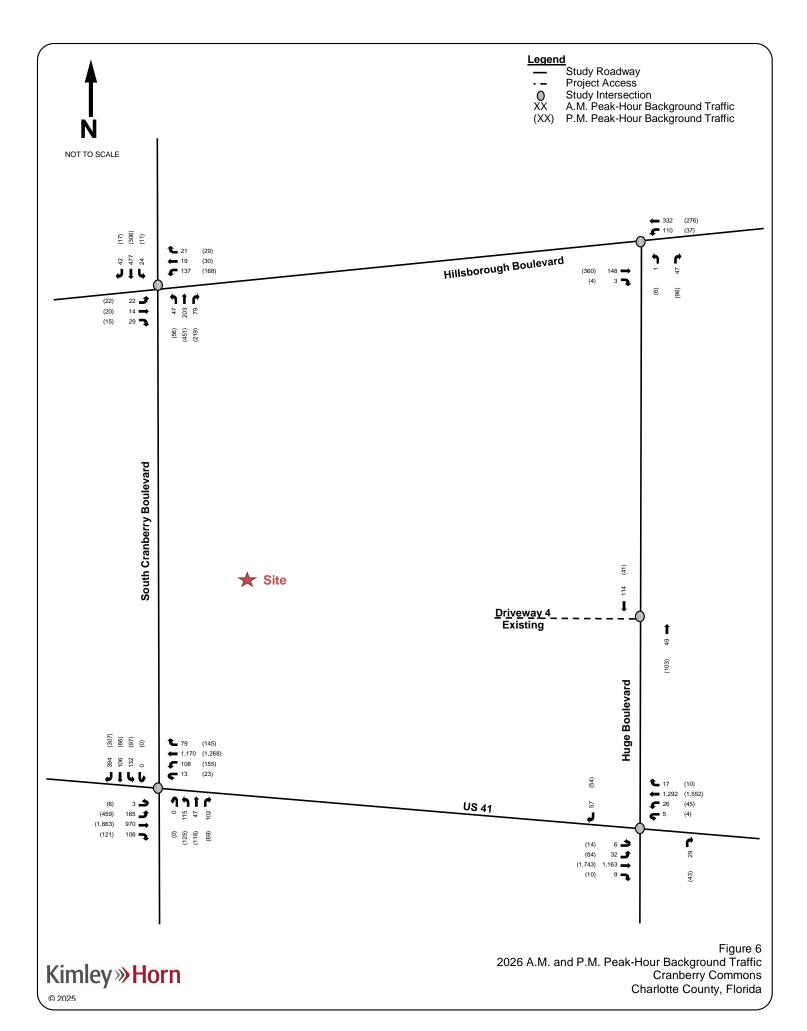


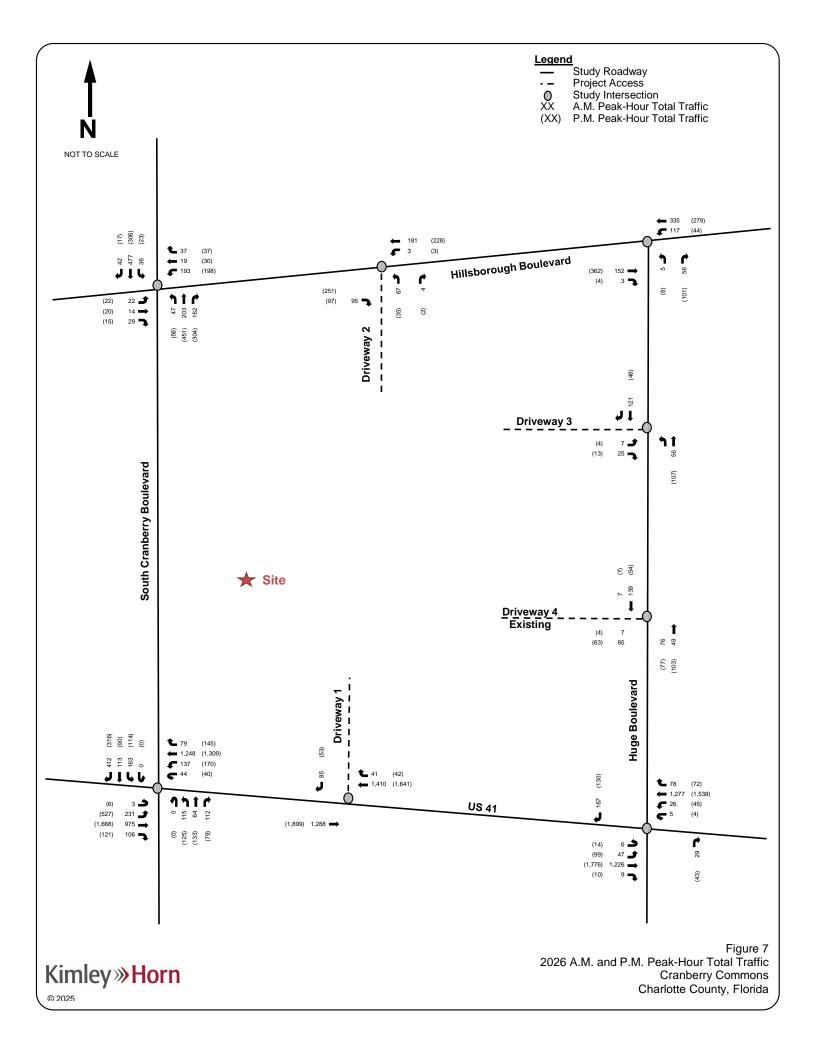
Table 3: 2025 Existing A.M. Peak-Hour Intersection Conditions

rable of 2020 Externing / tittle oak frought intercootion containing																
Intersection	Interception	Interception	Existing Conditions v/c Ratio Delay (Seconds)													
	Intersection Control	Intersection LOS		Southbound Approach			Northbound Approach			Eastbound Approach			Westbound Approach			
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR		
US 41 & S. Cranberry	Signalized	D	0.88	0.34	0.10	0.83	0.44	0.06	0.57	0.8	82	0.62	0.62	0.77		
Boulevard	Signalized		65.7	17.7	15.1	68.3	22.1	17.4	59.6	68	68.3		65.5	66.5		
LIC 41 9 Hugo Doulovord	TWSC	А	0.13		-		-		0.07			0.16				
US 41 & Huge Boulevard	10030		18.7		-	17.3		-		14.8			16.9			
			E	astbour	nd	V	Vestboui	nd	No	orthbou	nd	Southbound				
			P	Approac	h		Approac	h	Α	pproac	h	Approach				
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR				
Hillsborough Boulevard &	TWSC	۸		0.21		0.	69	0.03	0.05	-	-			-		
S. Cranberry Boulevard	TVVSC	А		19.3		49	9.5	9.8	8.8	-		7.9	.9 -			

Table 4: 2025 Existing P.M. Peak-Hour Intersection Conditions

Intersection	Interception	Interception	Existing Conditions v/c Ratio Delay (Seconds)													
	Intersection Control	Intersection LOS	Southbound Approach			Northbound Approach				astbour ipproac		Westbound Approach				
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR		
US 41 & S. Cranberry	Signalized	D	0.96	0.55	0.11	0.89	0.68	0.13	0.53	0.9	0.90		0.41	0.41		
Boulevard	Signalizeu	U	64.0	26.1	19.3	80.0	47.6	37.3	65.6	78.3		66.0	74.0	74.0		
US 41 & Huge Boulevard	TWSC	А	0.49	-		0.31	-		0.18			0.21				
03 41 & nuge boulevalu	1 4430		38.5		-	36.3		-		23.1			21.6			
	E	astbour	nd	V	Vestboui	nd	No	rthbou	nd	Southbound						
							Approac	h	Д	pproac	h	Approach				
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR				
Hillsborough Boulevard	TWSC	۸		0.34		1.	54	0.07	0.05		-	0.02		-		
& S. Cranberry Boulevard	I VVSC	А		32.5			1.8	13.2	8.2	-		9.2	-			


FUTURE TRAFFIC VOLUMES


Future traffic volumes consist of two components: project traffic and background traffic estimates. Background traffic volumes, including the procedures used to develop these estimates, are provided below.

Future background traffic is defined as a growth of existing traffic forecasted to the buildout year of the proposed development. For the purposes of this analysis, 2026 was considered the buildout year for the development and thus, 2026 conditions were evaluated as the "future" year scenario. A growth rate of 0.12% was calculated based upon five years of historical AADT data from two (2) nearby FDOT traffic monitoring sites. However, in order to provide a conservative analysis, a growth rate of 2.0% was utilized to grow existing volumes to future background volumes. Growth rate calculations and vested traffic information are provided in Appendix E.

The a.m. and p.m. peak-hour background traffic volumes are illustrated in Figure 6. The project traffic, illustrated in Figure 4, was then added to these background traffic volumes to determine total traffic volumes. The a.m. and p.m. peak-hour total traffic volumes are provided in Figure 7.

Volume development sheets are documented in Appendix F.

FUTURE BACKGROUND TRAFFIC CONDITIONS

Future background traffic conditions were evaluated for the study area intersections during the a.m. and p.m. peak hours. For this analysis, future background traffic estimates were considered. A determination of the impact of the non-project background traffic on the roadway network was made, including operating conditions for the study intersections. Based upon the January 31, 2025 meeting with Charlotte County, City of North Port, and FDOT, it is anticipated that the construction of the roundabout at the S. Cranberry Boulevard & Hillsborough Boulevard intersection will begin in 2025. As such, the roundabout was included as a background improvement. As part of the roundabout improvements, the westbound approach from S. Cranberry Boulevard to US 41 will include one (1) left-turn lane, one (1) through lane, and two (2) right-turn lanes. A second receiving lane will also be added to the east leg from S. Cranberry Boulevard to Hillsborough Boulevard. The 90% plans for the roundabout are included in Appendix G.

Background Conditions Intersection Analysis

Using the peak-hour background traffic volumes identified in Figure 6, an intersection analysis was conducted at the study area intersections. The analysis procedures used in this evaluation were consistent with those used to evaluate existing traffic conditions.

The results of the background intersection analysis are summarized in Table 5 and Table 6 and indicate that the study area intersections are anticipated to operate acceptably with a volume-to-capacity (v/c) ratio of less than 1.0 for all lane approaches during the a.m. and p.m. peak-hours.

Synchro output worksheets of the background conditions intersection analysis are provided in Appendix D.

Table 5: 2026 Background A.M. Peak-Hour Intersection Conditions

Existing Conditions v/c Ratio														
	Interception	Interception						g Condit Delay (Se		Ratio				
Intersection	Intersection Control	Intersection LOS		uthbou Approac			orthbou Approac			astbour pproac			estbour opproact	_
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR
US 41 & S. Cranberry	Cianalizad	D	0.88	0.39	0.11	0.84	0.51	0.07	0.50	0.	49	0.48	0.41	0.57
Boulevard	Signalized	U	65.5	22.3	19.0	68.2	27.6	21.7	52.6	60).7	51.3	58.4	48.4
LIC 41 9 Hugo Doulovord	TWSC	^	0.13		-	0.10		-		0.08			0.16	
US 41 & Huge Boulevard	10030	A	19.2		-	17.8		-		15.0			17.3	
			E	astbour	ıd	V	Vestbour	nd	No	rthbou	nd	So	uthbou	nd
			P	Approac	h		Approac	h	Α	pproac	h	A	Approacl	h
			EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Hillsborough Boulevard	Roundabout	А		0.12			0.21		0.:	21	0.05		0.55	
& S. Cranberry Boulevard	Roundabout	А		7.3			5.9			3.5	•		10.0	

Table 6: 2026 Background P.M. Peak-Hour Intersection Conditions

-		<u> </u>												
								g Condit						
	Intersection	Intersection						Delay (Se	econds)					
Intersection			So	uthbou	nd	N	orthbou	nd	Ea	astbour	nd	W	estbour/	nd
	Control	LOS	P	Approac	h		Approac	h	А	pproac	h	F	Approac	h
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR
US 41 & S. Cranberry	Signalized	D	0.96	0.57	0.11	0.89	0.72	0.14	0.54	0.	90	0.62	0.41	0.07
Boulevard	Signalizeu	ļ ⁰	63.3	26.8	19.7	79.9	49.6	38.6	65.5	78	3.1	65.6	73.7	33.2
LIC 41 9 Hugo Doulovard	TWSC	۸	0.52 -		0.33		-		0.19			0.21		
US 41 & Huge Boulevard	10030	А	41.6		-	38.6		-		23.8			22.2	
			E	astbour	nd	V	Vestbour	nd	No	orthbou	nd	Sc	uthbou	nd
			P	Approac	h		Approac	h	А	pproac	h	F	Approac	h
			EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Hillsborough Boulevard	Doundahaut	۸		0.08			0.34		0.	41	0.14		0.36	
& S. Cranberry Boulevard	Roundabout	А		5.4			9.3			4.5			7.2	

FUTURE TOTAL TRAFFIC CONDITIONS

Future traffic conditions were evaluated for the proposed mixed-use development during the a.m. and p.m. peak hours. For this analysis, total traffic estimates (background plus project) were considered. A determination of the impact of the project traffic on the roadway network was made, including operating conditions for the intersections within the study area. Based upon the January 31, 2025 meeting with Charlotte County, City of North Port, and FDOT staff, a second southbound left-turn lane along US 41 will be constructed by the Applicant in coordination with Charlotte County, after the planned second receiving lane is constructed on S. Cranberry Boulevard as part of the roundabout improvements at the S. Cranberry Boulevard & Hillsborough Boulevard intersection by Charlotte County and the City of North port.

Buildout Conditions Intersection Analysis

Using the a.m. and p.m. peak hour total traffic volumes in Figure 7, an intersection analysis was conducted at the study area intersections. The analyses procedures used in this evaluation were consistent with those used to evaluate existing and background traffic conditions.

The results of the buildout intersection analysis are summarized in Table 7 and Table 8 indicate that the study area intersections are anticipated to operate acceptably with a volume-to-capacity (v/c) ratio of less than 1.0 for all lane approaches during the a.m. and p.m. peak hours.

Synchro output worksheets for the buildout conditions intersection analysis are provided in Appendix D.

Cranberry Commons Page 19 Updated March 2025

Table 7: Buildout A.M. Peak-Hour Intersection Conditions

	Interception	Interception						g Condit Delay (Se						
Intersection	Intersection Control	Intersection LOS		uthbou Approac			orthbou Approac			astbour pproac			estbour pproac	-
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR
US 41 & S. Cranberry	Cianolizod	D	0.82	0.39	0.11	0.84	0.52	0.06	0.56	0.	86	0.82	0.59	0.26
Boulevard	Signalized	D	67.2 20.6 17.5		66.9	21.8	16.8	57.5	67	7.1	58.7	63.9	51.3	
LIC 41 0 Hugo Doubovord	TMCC	۸	0.21 -		-	0.11		-		0.08			0.50	
US 41 & Huge Boulevard	TWSC	А	22.5 -		18.8	,	-		15.5			25.7		
LIC 41 9 Draigat Driveryou 1	TMCC	Δ.	-			<u>-</u>			N/A			0.29		
US 41 & Project Driveway 1	TWSC	А	=			-			N/A			21.9		
			Eastbound Approach			Westbound Approach		Northbound Approach			Southbou Approac			
			EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Hillsborough Boulevard & S.	Roundabout	А		0.12			0.21		0.2	21	0.05		0.55	
Cranberry Boulevard	Roundabout	A		7.3			5.9			3.5	•	10.0		

Table 8: Buildout P.M. Peak-Hour Intersection Conditions

	ltt'	lt						g Condit Delay (Se						
Intersection	Intersection Control	Intersection LOS		uthbou Approac			orthbou Approac			astbour pproac			estbour pproact	
			SBL	SBT	SBR	NBL	NBT	NBR	EBL	EBT	EBR	WBL	WBT	WBR
US 41 & S. Cranberry	Signalized	D	0.90	0.60	0.12	0.90	0.60	0.11	0.50	0.	92	0.71	0.37	0.10
Boulevard	Signalizeu	U	72.2 30.1 22.1		79.1	37.5	28.9	62.5	76	8.6	63.4 70.8		43.6	
US 41 & Huge Boulevard	TWSC	۸	0.68		-	0.34		-		0.20			0.54	
03 41 & Huge Boulevalu	10030	А	60.9 -		40.6		-		24.4			34.2		
US 41 & Project Driveway 1	TWSC	А	-				-			N/A			0.35	
03 41 & Project Driveway 1	10030	A		-		-			N/A			27.0		
			Ea	astbour	nd	٧	Vestboui	nd	No	rthbou	nd	So	uthbour	nd
			Α	Approac	h		Approac	h	А	pproac	h	P	pproacl	า
			EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Hillsborough Boulevard & S.	Roundabout	А		0.08			0.40		0.	42	0.20		0.38	
Cranberry Boulevard	Roundabout	A		5.7			10.3			4.1			7.7	

TURN LANE ANALYSIS

Based upon the Pre-Application Meeting held with the Florida Department of Transportation, Charlotte County, and the City of North Port on February 15, 2022, turn lane warrant thresholds were reviewed to determine the need for an exclusive right-turn lane at Project Driveway 1 (right-in/right-out only connection along US 41). Also, based on the latest comments from FDOT dated October 16, 2024, a review of potential extensions of existing turn lanes needed along US 41 at the intersections of S. Cranberry Boulevard and Huge Boulevard was conducted.

Guidelines for determining the need for a right-turn lane were utilized based upon the FDOT's *Multimodal Access Management Guidebook (MAMG)* (October 2023) and *Florida Design Manual (FDM)* (2023). Please note that the speed limit along project frontage varies between 45 mph and 50 mph.

<u>US 41 & Driveway 1</u>

Right-turn guidelines in MAMG are based on *NCHRP Report 457*, which does not provide guidelines on 6-lane roadways. Based upon a meeting held with FDOT staff on November 13, 2024, the 3-lane volume (upon buildout in 2026) along northbound US 41 was divided by 3 to get average volume by lane and then multiplied by 2 to estimate through traffic for turn lane calculations. The result of this review indicated that a westbound right-turn lane is warranted. However, as discussed during the meeting held with FDOT staff on November 13, 2024, US 41 in Charlotte County was reviewed in the project vicinity for turn lanes along existing driveways and currently, right turn lanes are not provided at driveways (with developments of all sizes) or unsignalized intersections within one (1) mile of the proposed project driveway in Charlotte County and therefore, a right-turn lane is not recommended at Driveway 1 along US 41. Turn lane documentation is provided in Appendix H.

US 41 & Huge Boulevard

The southbound left-turn lane along US 41 is approximately 400 feet in length. To determine the adequacy of this turn lane, a *Synchro* analysis was conducted for the buildout a.m. and p.m. peak-hour conditions. Based on the results of the analysis, a 95th percentile queue of four (4) vehicles (100 feet) was identified in the p.m. peak hour, higher than the a.m. peak hour queue of one (1) vehicle. Additionally, using a required deceleration length of 290 feet based on FDM Exhibit 212-1 (50 mph), the total turn lane length should be 390 feet. Therefore, the current length is anticipated to be adequate upon project buildout. Table 9 provides a turn lane analysis summary including deceleration, queue, and total turn lane lengths at the intersection.

Table 9: US 41 & Huge Boulevard Turn Lane Analysis

Intersection	Design Speed	Movement	Condition	Required Deceleration Length (ft)	Queue Length ¹ (ft)	Total Required Length (ft)	Existing Length (ft)	Existing Turn Lane Acceptable?	Proposed Length (ft)
			Existing		75	365	400	Yes	400
US 41 & Huge Boulevard	50 mph	SBL	Background	290	75	365	400	Yes	400
Douievalu			Future Total		100	390	400	Yes	400

¹The worst-case scenario (AM or PM peak hour queue) was utilized.

US 41 & S. Cranberry Boulevard

The southbound left-turn lane along US 41, and westbound left-turn and right-turn lanes along S. Cranberry Boulevard are anticipated to be utilized by project traffic, and as such, were reviewed for adequacy upon project buildout. Queue lengths from the *Synchro* analysis upon project buildout during the a.m. and p.m. peak-hour conditions, whichever was higher, were utilized. As detailed earlier, a second westbound right-turn lane will be constructed on S. Cranberry Boulevard as part of the roundabout improvements and a second southbound left-turn lane will be constructed on US 41, along with a receiving lane on S. Cranberry Boulevard. Table 10 provides a turn lane analysis summary including deceleration, queue, and total turn lane lengths at the intersection.

Table 10: US 41 & S. Cranberry Boulevard Turn Lane Analysis

				<u> </u>					
Intersection	Design Speed	Movement	Condition	Required Deceleration Length (ft)	Queue Length ⁴ (ft)	Total Required Length (ft)	Existing Length (ft)	Existing Turn Lane Acceptable?	Proposed Length (ft)
			Existing		1,350	1,640	715	No	-
		SBL ¹	Background	290	750	1,040	715	No	-
			Future Total		400	690	715	Yes	-
			Existing		175	175	225	Yes	-
US 41 & S. Cranberry	50 mph	WBL	Background	03	175	175	275	Yes	-
Boulevard			Future Total		225	225	275	Yes	
			Existing		325	325	250	No	-
		WBR ²	Background	03	175	175	275	Yes	-
			Future Total		200	200	275	Yes	-

¹Dual left-turn lanes under future total buildout.

MULTIMODAL ANALYSIS

A Pedestrian/Bicycle/Transit Impact Analysis was conducted, per Section 4.8 of the 2024 *Multimodal Site Impact Handbook* (MSIH). Multimodal trips were calculated based upon ITE's 11th Edition *Trip Generation Manual*.

As shown in Table 11, the highest number of non-motorized trips the proposed project is anticipated to generate is 69 in the p.m. peak-hour, qualifying for a Level 3 Analysis based on C3-suburban context classification along US 41.

²Dual right-turn lanes under background and future total buildout.

³No deceleration length required because of the roundabout.

⁴The worst-case scenario (AM or PM peak hour queue) was utilized.

Table 11: Multimodal Trip Generation Analysi	Table 11:	Multimodal	Trip	Generation	Analy	sis'
--	-----------	------------	------	------------	-------	------

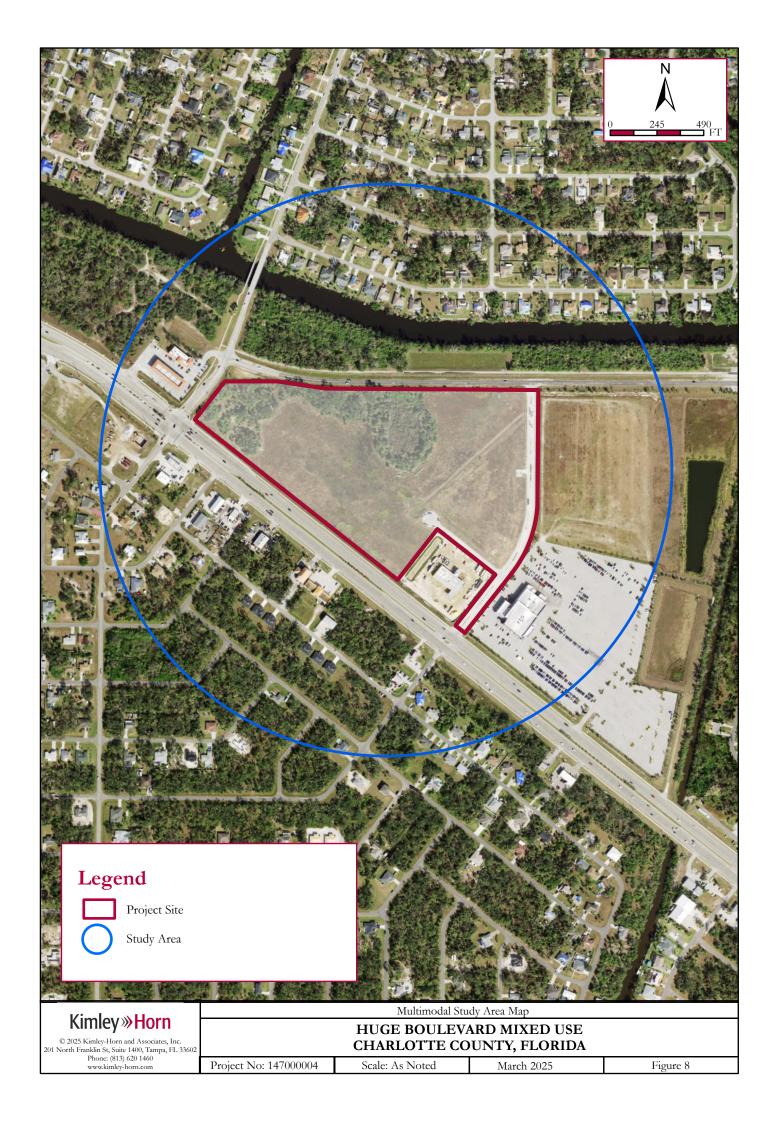
Land Use	ITE Code	Scale	ITE Units	Mode	Peak-Hour	Average Rate	Trips
Multifamily Housing Mid-	221	340	DU	Walk + Bike	A.M.	N/A	N/A
Rise				+ Transit	P.M.	0.07	24
Strip Retail Plaza (<40K)	822	10	KSF	Walk + Bike	A.M.	N/A	N/A
Strip Retail Flaza (<40K)	022	10	KSI	+ Transit	P.M.	0.56	6
High-Turnover Restaurant	9321	7.762	KSF	Walk + Bike	A.M.	N/A	N/A
with Drive Through-Window	9321	1.702	KSF	+ Transit	P.M.	2.92	23
Fast-Food Restaurant with	024	F 422	VCE	Walk + Bike	A.M.	N/A	N/A
Drive-Through Window	934	5.433	KSF	+ Transit	P.M.	2.92	16
Automated Car Week	040	1	THNNE	Walk + Bike	A.M.	N/A	N/A
Automated Car Wash	948	ı	TUNNEL	+ Transit	P.M.	N/A	N/A
			•	•	Total	A.M.	N/A
					Total	P.M.	69

ITE does not provide trip rates for LUC 932 (High-Turnover Restaurant with Drive Through-Window), so LUC
 934 (Fast-Food Restaurant with Drive-Through Window) was utilized.

For a Level 3 Analysis, the study area includes a 1,500-foot radius that measures from each driveway, or the nearest signalized intersection that is outside of the radius. Figure 8 shows the study area. Pedestrian, bicycle and transit facilities within the study area are discussed below.

Pedestrians

A 6-foot sidewalk currently exists along both sides of US 41 within the study area. Sidewalks will be provided on-site and connected to the sidewalk on the east side of US 41.

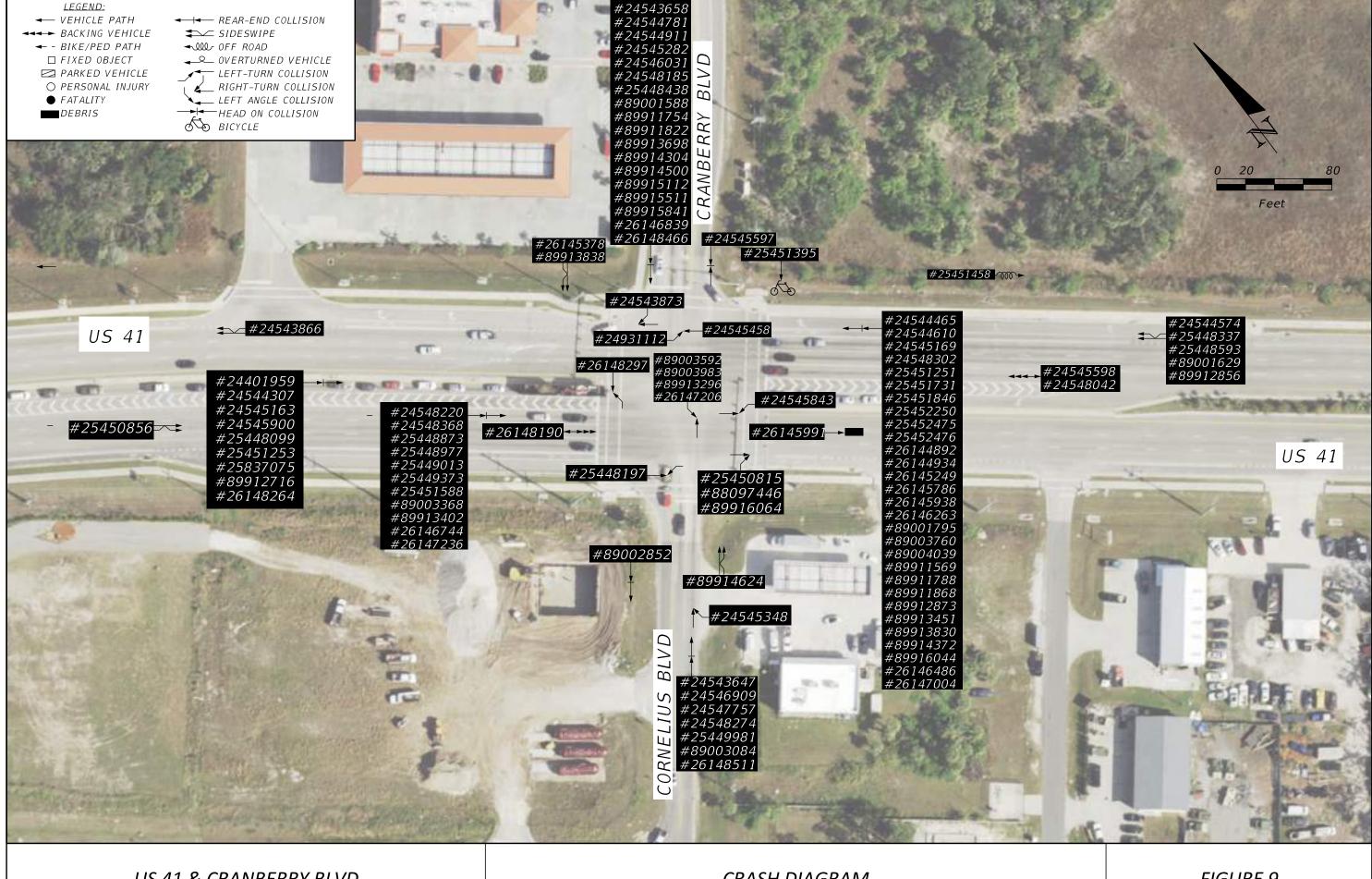

Bicyclists

Dedicated bicycle lanes currently exist along both sides of US 41 within the study area.

<u>Transit</u>

Charlotte County currently does not provide Transit Routes along US 41 adjacent to the project site.

Cranberry Commons Page 24 Updated March 2025


SAFETY ANALYSIS

A review of crash data was completed at the study area intersections of US 41 & S. Cranberry Boulevard, S. Cranberry Boulevard & Hillsborough Boulevard, and US 41 & Huge Boulevard, per Section 4.9 of the 2024 *Multimodal Site Impact Handbook*. Crash data was obtained from *Signal Four Analytics* for the five-year period between June 2019 and June 2024.

Table 12 provides a summary of the crashes that occurred at the US 41 & S. Cranberry Boulevard intersection. 75 out of the 106 crashes were rear end crashes. It is recommended for the FDOT to review the reasons for the existing rear-end crashes and potential solutions for the crashes, e.g., modifying yellow clearance times (change interval). A crash diagram is provided below in Figure 9.

Table 12: US 41 & S. Cranberry Boulevard Crash Summary

Year	Backed Into	Bicycle	Left Turn	Off Road	Debris	Rear End	Right Turn	Sideswipe	Head On	Total
2019	0	0	0	0	0	6	0	1	0	7
2020	0	0	3	0	0	13	0	2	0	18
2021	1	0	2	0	0	18	2	3	1	27
2022	1	0	2	0	0	14	1	2	0	20
2023	0	1	0	1	1	16	2	2	0	23
2024	1	0	2	0	0	8	0	0	0	11
Total	3	1	9	1	1	75	5	10	1	106

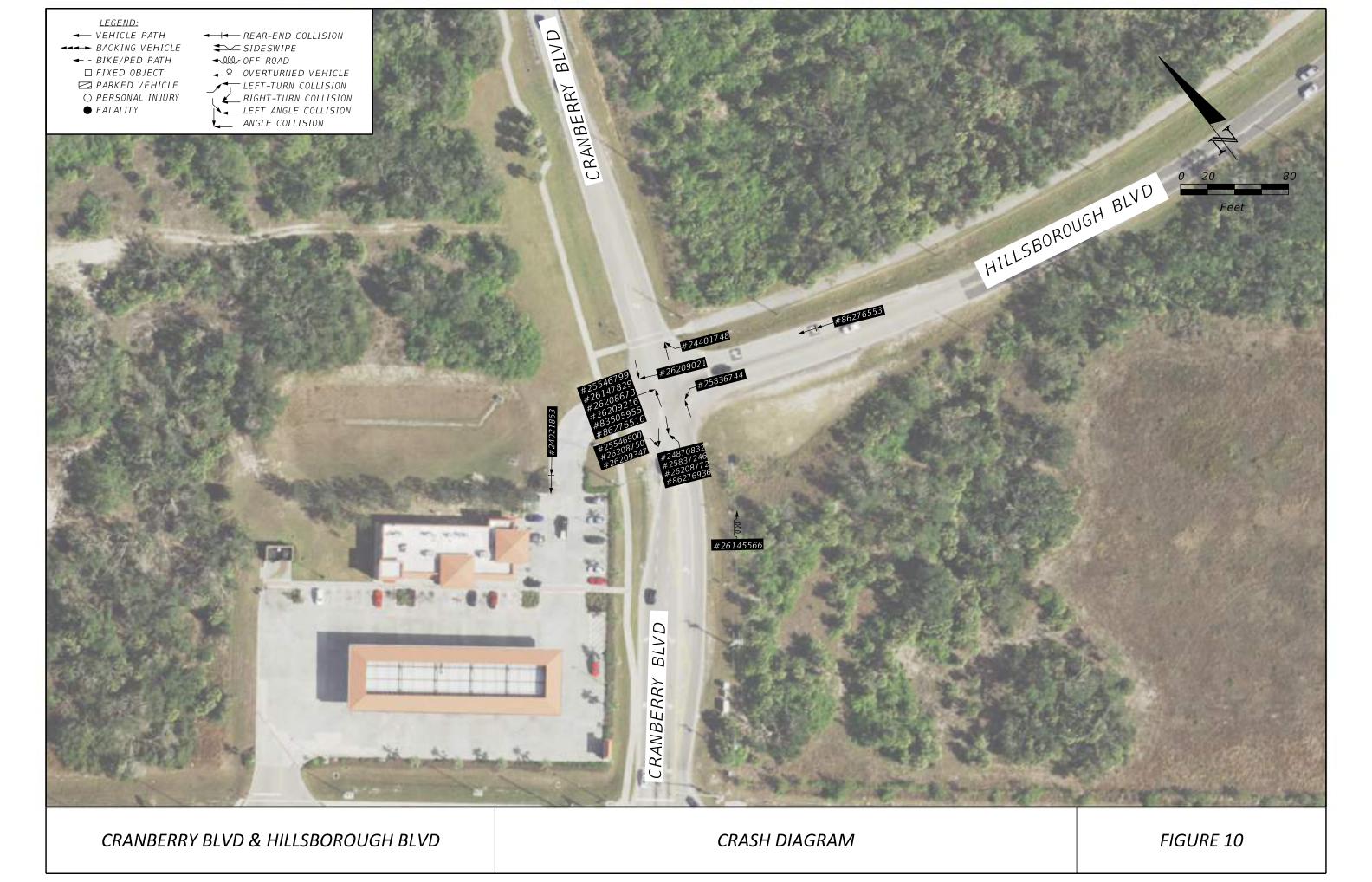
US 41 & CRANBERRY BLVD CRASH DIAGRAM FIGURE 9

Table 13 provides a summary of the crashes that occurred at the S. Cranberry Boulevard & Hillsborough Boulevard intersection. Seven (7) out of the 19 crashes were angle crashes. No crash trends were identified. A crash diagram is provided below in Figure 10.

Table 13: S. Cranberry Boulevard & Hillsborough Boulevard Crash Summary

Year	Left Turn	Off Road	Left Angle	Rear End	Right Turn	Angle	Total
2019	1	0	0	1	0	1	3
2020	0	0	0	1	0	1	2
2021	0	0	0	0	1	0	1
2022	1	0	0	0	0	0	1
2023	1	1	1	0	1	1	5
2024	1	0	0	0	2	4	7
Total	4	1	1	2	4	7	19

Cranberry Commons Page 28 Updated March 2025



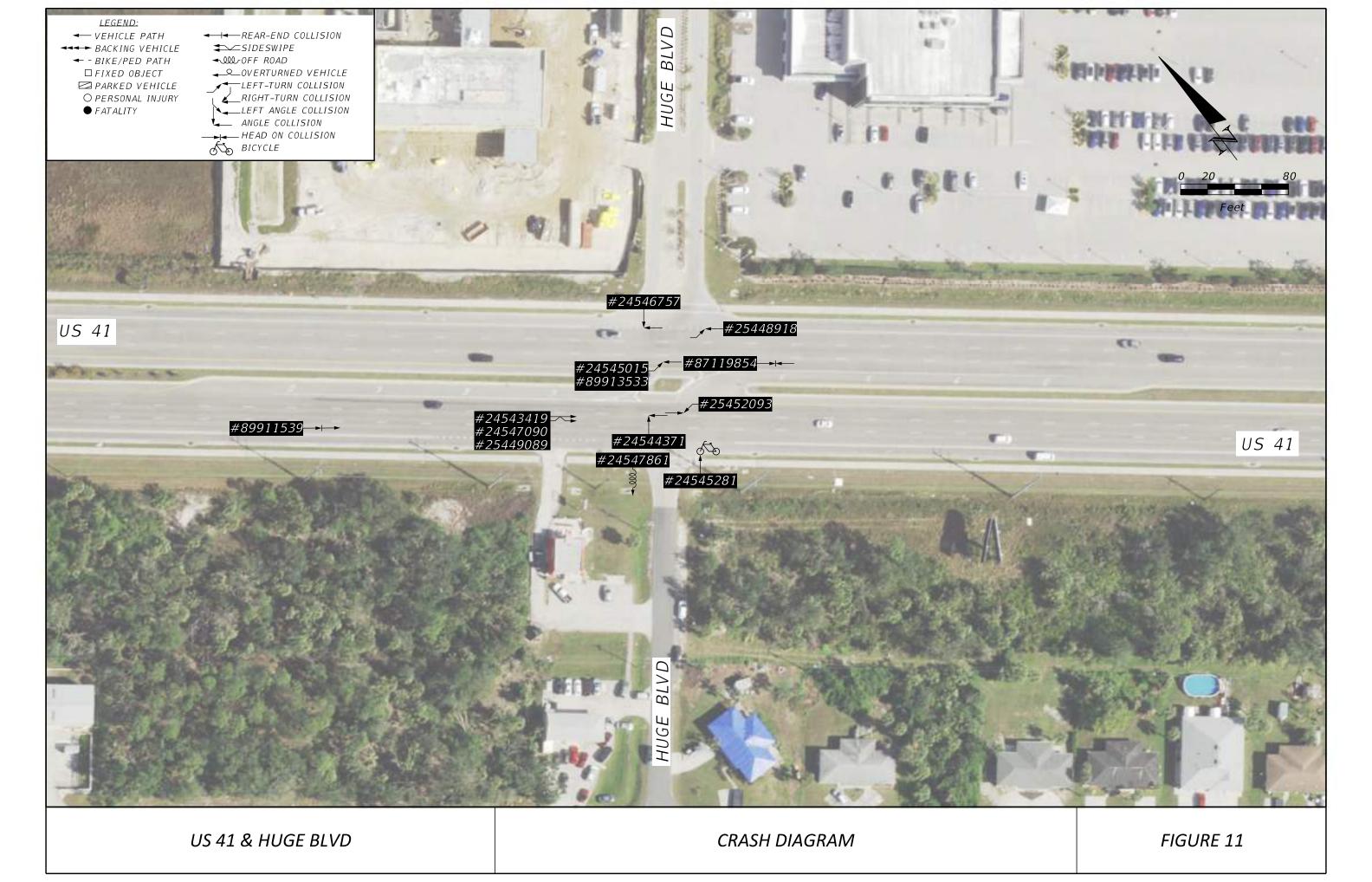


Table 14 provides a summary of the crashes that occurred at the US 41 & Huge Boulevard intersection. Four (4) out of the 13 crashes were left turn crashes. No crash trends were identified. A crash diagram is provided below in Figure 11.

Table 14: US 41 & Huge Boulevard Crash Summary

Year	Head On	Bicycle	Left Turn	Off Road	Angle	Rear End	Sideswipe	Total
2019	0	0	0	0	0	0	0	0
2020	1	0	1	0	0	1	0	3
2021	0	1	1	0	1	0	1	4
2022	0	0	1	1	1	0	2	5
2023	0	0	1	0	0	0	0	1
2024	0	0	0	0	0	0	0	0
Total	1	1	4	1	2	1	3	13

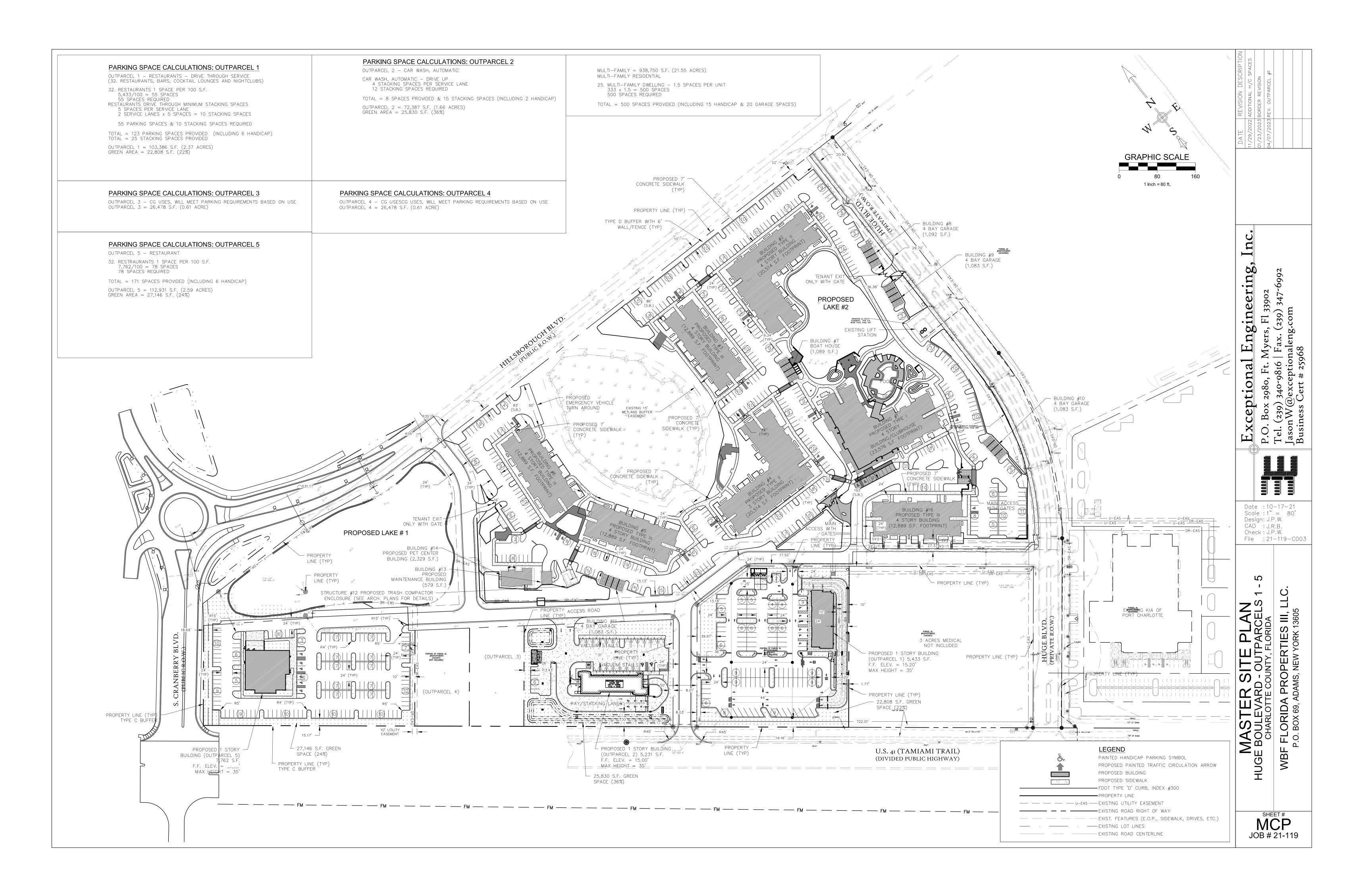
Cranberry Commons Page 30 Updated March 2025

CONCLUSION

Based upon the Pre-Application Meeting held with the Florida Department of Transportation, Charlotte County, and the City of North Port on February 15, 2022, the latest comments from FDOT dated October 16, 2024, and subsequent discussions with FDOT, Charlotte County, and City of North Port on November 13, 2024, and January 31, 2025, this updated Traffic Impact Study (TIS) provides an evaluation of the transportation impacts of the proposed Cranberry Commons development. It is anticipated to be built-out by 2026 and is proposed to consist of up to the following development:

- 340 multi-family housing mid-rise units
- 7,762 square feet of restaurant
- 5,433 square feet of fast-food restaurant with drive-through
- 5,231 square feet (1 tunnel) of car wash
- 10,000 square feet of retail

As shown in the conceptual site plan in Appendix A, access to the site is provided through the following access connections:


- Project Driveway 1: Proposed right-in/right-out only connection along US 41
- Project Driveway 2: Proposed full-access connection along Hillsborough Boulevard
- Project Driveway 3: Proposed egress-only connection along Huge Boulevard (Northern)
- Project Driveway 4: Existing full-access connection along Huge Boulevard (Southern)

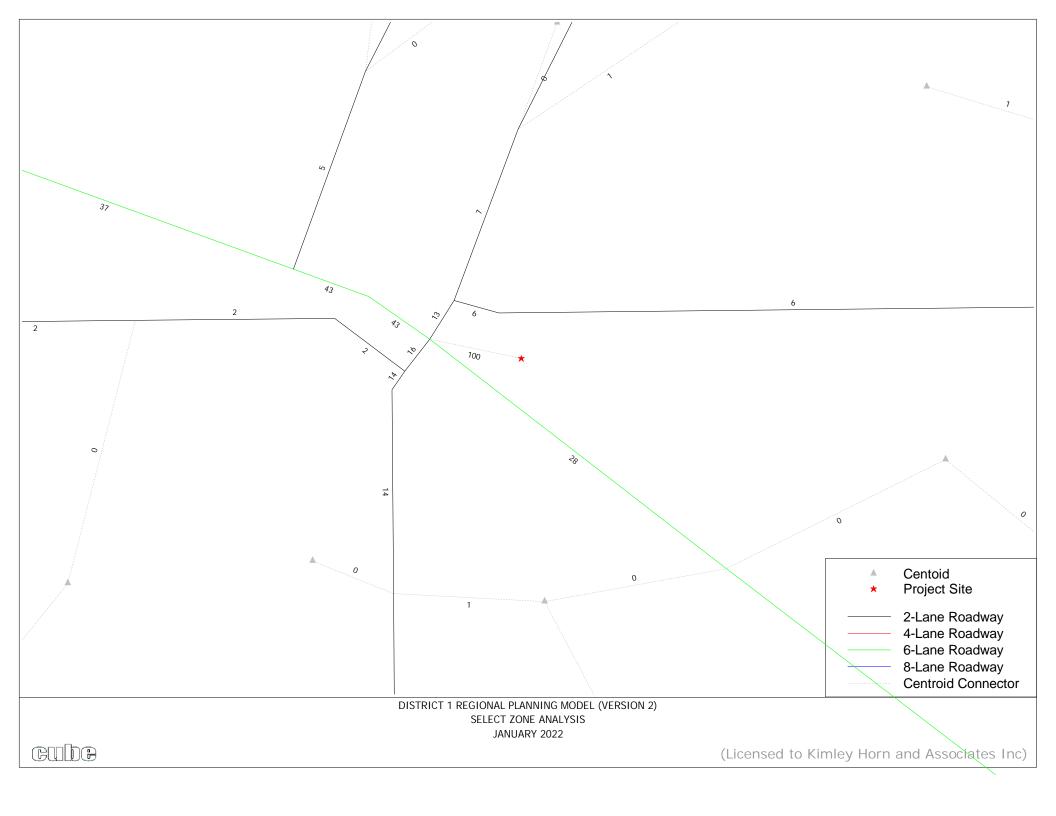
Based upon the results of the intersection analysis, the study area intersections are anticipated to operate with a volume-to-capacity (v/c) ratio of less than 1.0 for all lane approaches during the a.m. and p.m. peak-hours, following buildout of the proposed development. The buildout conditions account for the construction of the roundabout at the S. Cranberry Boulevard & Hillsborough Boulevard intersection by Charlotte County and the City of North Port. As part of

the roundabout improvements, the westbound approach from S. Cranberry Boulevard to US 41 will include one (1) left-turn lane, one (1) through lane, and two (2) right-turn lanes. A second receiving lane will also be added to S. Cranberry Boulevard (east leg) from US 41 to Hillsborough Boulevard. Additionally, based upon the January 31, 2025 meeting with Charlotte County, City of North Port, and FDOT, a second southbound left-turn lane along US 41 will be constructed by the Applicant in coordination with Charlotte County, after the planned second receiving lane is constructed on S. Cranberry Boulevard as part of the roundabout improvements by Charlotte County and the City of North Port.

APPENDIX A: Conceptual Site Plan and Trip Generation Documentation

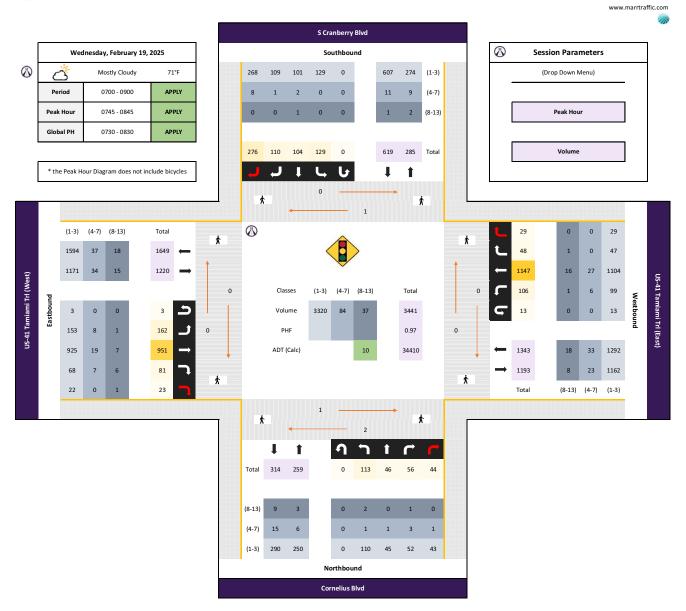
DAILY PROJECT TRIP GENERATION

ITE TRIP GENERATION	ITE TRIP GENERATION CHARACTERISTICS					DIRECTIONAL GROSS DISTRIBUTION TRIPS				RNAL TURE	EXT	TOTAI ERNAL		PASS-BY CAPTURE		NET NEW EXTERNAL TRIPS			
	ITE	ITE		ITE	Per	cent					IC					PB			
Land Use	Edition	Code	Scale	Units	In	Out	ln	Out	Total	Percent	Trips	In	Out	Total	Percent	Trips	In	Out	Total
Multifamily Housing Mid-Rise	11	221	340	DU	50%	50%	788	788	1,576	21.3%	336	620	620	1,240	0.0%	0	620	620	1,240
Strip Retail Plaza (<40k)	11	822	10	KSF	50%	50%	272	272	544	41.7%	226	159	159	318	0.0%	0	159	159	318
High-Turnover (Sit-Down) Restaurant	11	932	7.762	KSF	50%	50%	416	416	832	11.3%	94	369	369	738	0.0%	0	369	369	738
Fast-Food Restaurant with Drive-Through Window	11	934	5.433	KSF	50%	50%	1,270	1,270	2,540	11.3%	288	1,126	1,126	2,252	0.0%	0	1,126	1,126	2,252
Automated Car Wash	11	948	1	WASH	50%	50%	388	388	776	0.0%	0	388	388	776	0.0%	0	388	388	776
						Total:	3.134	3.134	6.268	15.1%	944	2,662	2,662	5,324			2,662	2,662	5,324

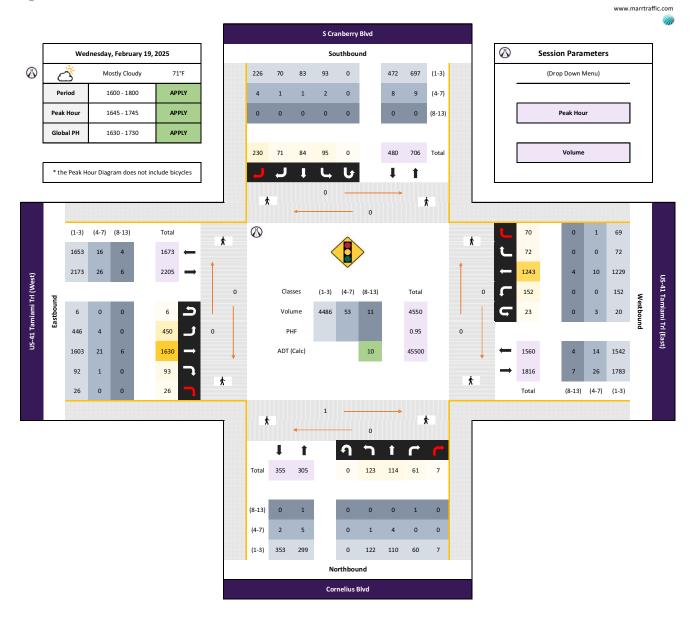

Internal Capture Reduction Calculations

Methodology for A.M. Peak Hour and P.M. Peak Hour based on the *Trip Generation Handbook*, 3rd Edition, published by the Institute of Transportation Engineers

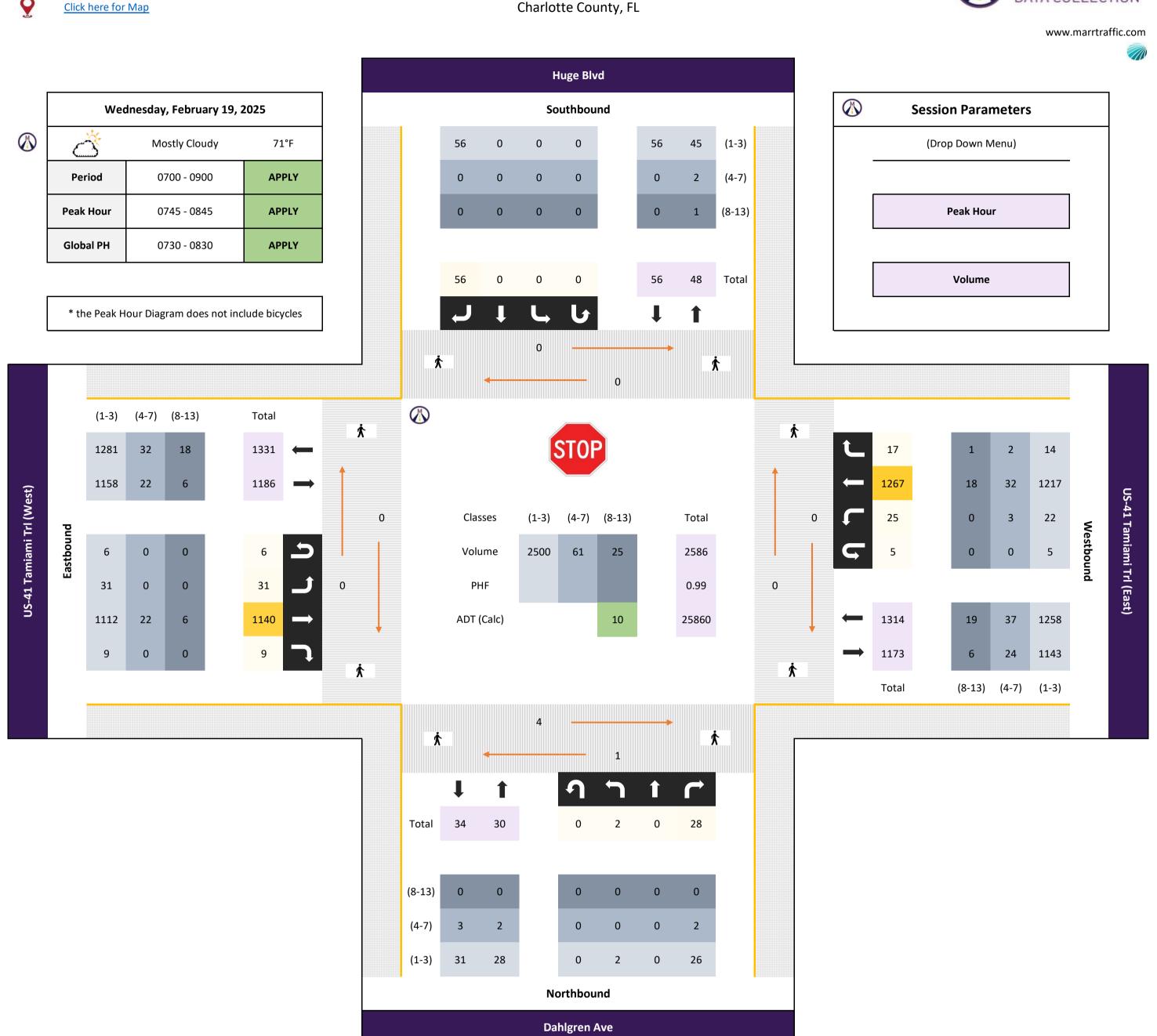
Methodology for Daily based on the average of the Unconstrained Rates for the A.M. Peak Hour and P.M. Peak Hour

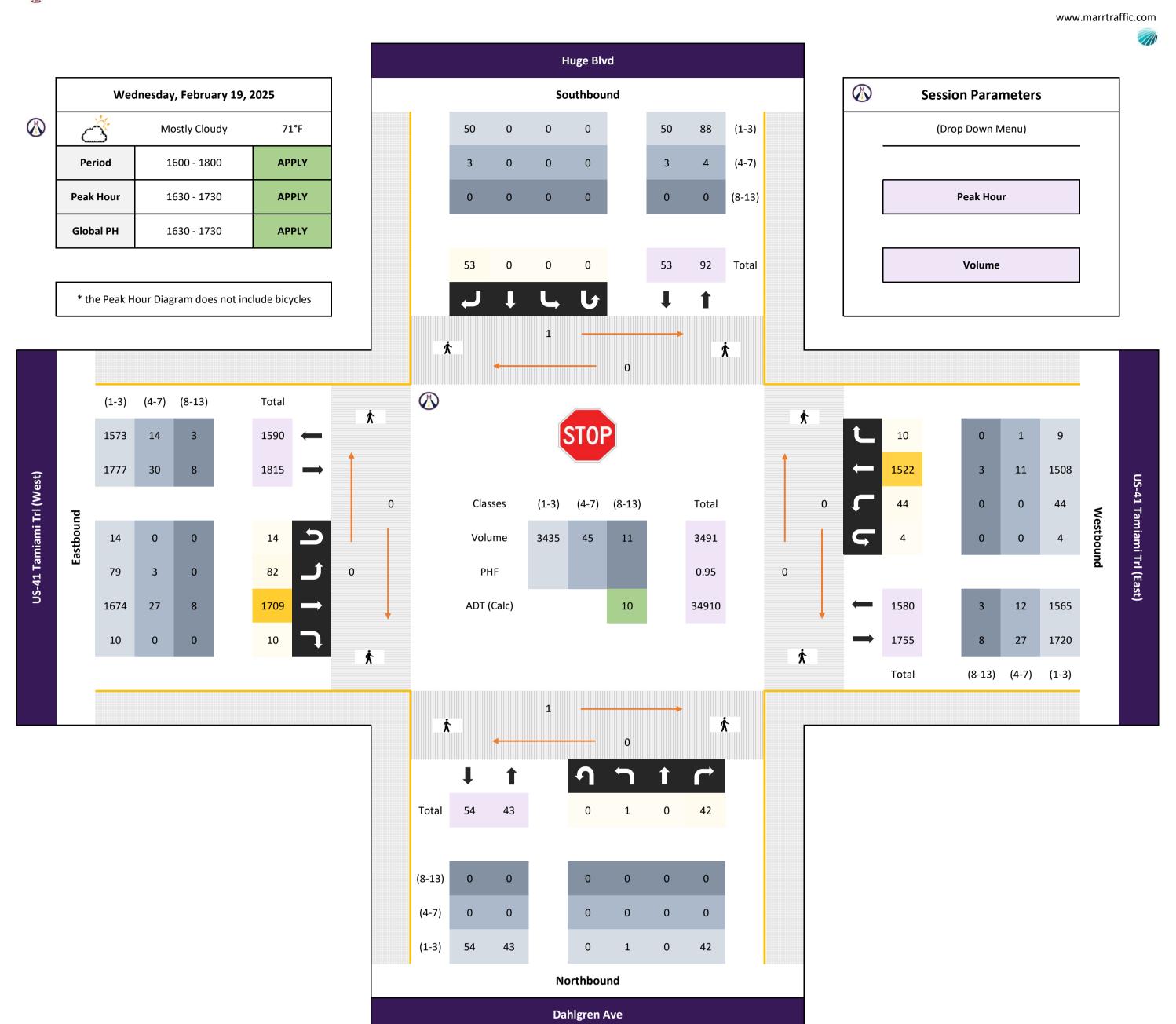

SUMMARY (EXISTING) **GROSS TRIP GENERATION** Daily A.M. Peak Hour P.M. Peak Hour Land Use Enter Exit Enter Enter Exit Exit Office INPUT Retail 272 272 14 10 33 33 Restaurant 1,686 1,686 164 152 136 113 Cinema/Entertainment 788 788 32 106 52 Residential 81 Hotel 2,746 2,746 210 268 250 198 **INTERNAL TRIPS** Daily A.M. Peak Hour P.M. Peak Hour Land Use Enter Exit Enter Enter Exit Exit OUTPUT Office 0 0 0 0 0 0 Retail 116 111 2 2 20 19 22 3 30 Restaurant 219 162 21 0 Cinema/Entertainment 0 0 0 0 0 22 137 199 3 22 14 Residential Hotel 0 0 0 0 0 0 472 27 472 27 63 63 17.2% 11.3% Total % Reduction 28.1% Office Retail 41.7% 16.7% 59.1% 11.3% 7.9% 20.5% Restaurant Cinema/Entertainment 21.3% 18.1% 27.1% Residential Hotel **EXTERNAL TRIPS** Daily A.M. Peak Hour P.M. Peak Hour Land Use Enter Exit Enter Exit Enter Exit Office 0 0 0 0 0 0 Retail 156 161 12 8 13 14 Restaurant 1,467 1,524 142 149 115 83 Cinema/Entertainment 0 0 0 0 0 0 Residential 651 589 29 84 59 38 Hotel 0 0 0 0 0 0 2,274 2,274 183 241 187 135

APPENDIX B: FSUTMS Model Output



APPENDIX C: Raw Turning Movement Counts and Peak Season Factor Report





Click here for Map

Click here for Map


2023 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL

CATEGORY: 0100 COUNTYWIDE

DATES	CATEGORY: 0100 COUNTYWIDE									
1										
53 12/31/2023 - 12/31/2023 1.00 1.11	123456789012345678901234567890123345678901234567890123456789012345678901234567890123456789012345678901	01/01/2023 - 01/07/2023 01/08/2023 - 01/14/2023 01/15/2023 - 01/21/2023 01/29/2023 - 01/28/2023 01/29/2023 - 02/04/2023 02/05/2023 - 02/11/2023 02/12/2023 - 02/18/2023 02/19/2023 - 02/25/2023 02/19/2023 - 02/25/2023 02/26/2023 - 03/04/2023 03/05/2023 - 03/11/2023 03/05/2023 - 03/11/2023 03/12/2023 - 03/18/2023 03/19/2023 - 03/25/2023 03/26/2023 - 04/01/2023 03/19/2023 - 04/08/2023 04/02/2023 - 04/08/2023 04/09/2023 - 04/25/2023 04/16/2023 - 04/22/2023 04/30/2023 - 05/20/2023 04/30/2023 - 05/20/2023 05/07/2023 - 05/20/2023 05/07/2023 - 05/20/2023 05/14/2023 - 05/20/2023 05/21/2023 - 05/20/2023 05/28/2023 - 06/03/2023 05/28/2023 - 06/03/2023 06/04/2023 - 06/10/2023 06/11/2023 - 06/10/2023 06/18/2023 - 06/24/2023 06/18/2023 - 07/01/2023 06/18/2023 - 07/01/2023 07/02/2023 - 07/01/2023 07/02/2023 - 07/01/2023 07/02/2023 - 07/22/2023 07/03/2023 - 07/22/2023 07/23/2023 - 07/22/2023 07/23/2023 - 07/29/2023 07/23/2023 - 07/29/2023 07/23/2023 - 08/26/2023 08/13/2023 - 08/26/2023 08/13/2023 - 09/02/2023 09/03/2023 - 09/02/2023 09/03/2023 - 09/02/2023 09/03/2023 - 09/02/2023 09/10/2023 - 09/16/2023 09/10/2023 - 09/23/2023 10/01/2023 - 10/21/2023 10/01/2023 - 10/21/2023 10/01/2023 - 10/21/2023 10/01/2023 - 10/21/2023 11/15/2023 - 11/11/2023 11/15/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023 11/19/2023 - 11/18/2023	1.00 1.00 1.00 0.97 0.94 0.90 0.87 0.87 0.88 0.88 0.90 0.92 0.94 0.96 0.98 1.01 1.03 1.05 1.06 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.08 1.09 1.00	1.11 1.11 1.08 1.04 1.00 0.97 0.97 0.97 0.97 0.96 0.98 1.00 1.02 1.04 1.07 1.09 1.12 1.14 1.17 1.18 1.19 1.19 1.19 1.19 1.19 1.19 1.19						

^{*} PEAK SEASON

APPENDIX D: Intersection Analyses Worksheets

	*	•	×)	~	×	1	7	×	Ĺ	×	*
Lane Group	SEU	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR
Lane Configurations		7	ተተተ	7	Ä	^	7	*	đ	*	†	7
Traffic Volume (vph)	3	162	951	104	106	1147	77	113	46	129	104	386
Future Volume (vph)	3	162	951	104	106	1147	77	113	46	129	104	386
Lane Group Flow (vph)	0	170	980	107	122	1182	79	116	150	133	107	398
Turn Type	custom	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	Perm
Protected Phases		5	2		1	6		3	8	7	4	
Permitted Phases	5			2			6	8		4		4
Detector Phase	5	5	2	2	1	6	6	3	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0	7.0
Minimum Split (s)	13.6	13.6	27.6	27.6	13.0	27.6	27.6	12.5	14.5	12.5	25.5	25.5
Total Split (s)	33.0	33.0	73.0	73.0	29.0	69.0	69.0	17.0	26.0	22.0	31.0	31.0
Total Split (%)	22.0%	22.0%	48.7%	48.7%	19.3%	46.0%	46.0%	11.3%	17.3%	14.7%	20.7%	20.7%
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5	4.5
All-Red Time (s)	3.0	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5	7.5
Lead/Lag	Lead	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None	None
v/c Ratio		3.62	0.39	0.13	0.68	0.68	0.12	0.44	0.67	0.53	0.51	0.89
Control Delay (s/veh)		Error	25.3	1.6	83.0	43.1	0.4	51.5	53.0	53.5	69.7	39.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)		Error	25.3	1.6	83.0	43.1	0.4	51.5	53.0	53.5	69.7	39.2
Queue Length 50th (ft)		~300	222	0	117	360	0	91	85	105	100	98
Queue Length 95th (ft)		#451	284	14	183	374	0	147	162	165	158	#234
Internal Link Dist (ft)			813			1018			411		404	
Turn Bay Length (ft)		700		365	365		410	120		215		245
Base Capacity (vph)		47	2525	808	237	2041	733	264	263	265	289	501
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		3.62	0.39	0.13	0.51	0.58	0.11	0.44	0.57	0.50	0.37	0.79

Intersection Summary

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:SET and 6:NWT, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: S Cranberry Blvd & US 41

	*	•	×)	•	~	×	*	7	×	~	٤
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL
Lane Configurations		74	ተተተ	7		7	^	7	ř	f)		*
Traffic Volume (veh/h)	3	162	951	104	13	106	1147	77	113	46	100	129
Future Volume (veh/h)	3	162	951	104	13	106	1147	77	113	46	100	129
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Lane Width Adj.		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1811	1856	1752		1796	1841	1870	1856	1870	1870	1900
Adj Flow Rate, veh/h		167	980	83		109	1182	49	116	47	58	133
Peak Hour Factor		0.97	0.97	0.97		0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %		6	3	10		7	4	2	3	2	2	0
Cap, veh/h		190	2855	837		131	2642	833	203	58	71	213
Arrive On Green		0.11	0.56	0.56		0.08	0.53	0.53	0.06	0.08	0.08	0.08
Sat Flow, veh/h		1725	5066	1485		1711	5025	1585	1767	761	940	1810
Grp Volume(v), veh/h		167	980	83		109	1182	49	116	0	105	133
Grp Sat Flow(s),veh/h/ln		1725	1689	1485		1711	1675	1585	1767	0	1701	1810
Q Serve(g_s), s		14.3	15.7	3.9		9.4	21.9	2.3	9.1	0.0	9.1	10.0
Cycle Q Clear(g_c), s		14.3	15.7	3.9		9.4	21.9	2.3	9.1	0.0	9.1	10.0
Prop In Lane		1.00		1.00		1.00		1.00	1.00		0.55	1.00
Lane Grp Cap(c), veh/h		190	2855	837		131	2642	833	203	0	129	213
V/C Ratio(X)		0.88	0.34	0.10		0.83	0.45	0.06	0.57	0.00	0.82	0.62
Avail Cap(c_a), veh/h		281	2855	837		240	2642	833	203	0	210	242
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	1.00	1.00
Uniform Delay (d), s/veh		65.7	17.7	15.1		68.3	22.1	17.4	59.6	0.0	68.3	58.0
Incr Delay (d2), s/veh		18.6	0.3	0.2		12.8	0.6	0.1	3.8	0.0	11.8	4.0
Initial Q Delay(d3), s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln		11.6	10.0	2.4		8.0	13.2	1.5	7.6	0.0	7.8	8.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh		84.3	18.0	15.4		81.1	22.6	17.5	63.5	0.0	80.1	62.0
LnGrp LOS		F	В	В		F	С	В	E		F	Е
Approach Vol, veh/h			1230				1340			221		
Approach Delay, s/veh			26.9				27.2			71.3		
Approach LOS			С				С			E		
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	19.5	92.1	17.0	21.4	25.1	86.5	19.6	18.8				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	21.0	65.4	9.5	23.5	24.4	61.4	14.5	18.5				
Max Q Clear Time (g_c+I1), s	11.4	17.7	11.1	12.4	16.3	23.9	12.0	11.1				
Green Ext Time (p_c), s	0.2	17.0	0.0	0.6	0.2	18.9	0.1	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			34.8									
HCM 7th LOS			С									
Notes												
User approved ignoring U-Turning movement.												

	×	*
Movement	SWT	SWR
Lane Configurations	†	7
Traffic Volume (veh/h)	104	386
Future Volume (veh/h)	104	386
Initial Q (Qb), veh	0	0
Lane Width Adj.	1.00	1.00
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Work Zone On Approach	No	
Adj Sat Flow, veh/h/ln	1856	1870
Adj Flow Rate, veh/h	107	113
Peak Hour Factor	0.97	0.97
Percent Heavy Veh, %	3	2
Cap, veh/h	172	147
Arrive On Green	0.09	0.09
Sat Flow, veh/h	1856	1585
Grp Volume(v), veh/h	107	113
Grp Sat Flow(s), veh/h/ln	1856	1585
Q Serve(q_s), s	8.3	10.4
Cycle Q Clear(g_c), s	8.3	10.4
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	172	147
V/C Ratio(X)	0.62	0.77
Avail Cap(c_a), veh/h	291	248
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	65.5	66.5
Incr Delay (d2), s/veh	3.6	8.2
Initial Q Delay(d3), s/veh	0.0	0.0
%ile BackOfQ(95%),veh/ln	7.3	8.0
Unsig. Movement Delay, s/ve	eh	
LnGrp Delay(d), s/veh	69.2	74.6
LnGrp LOS	Ε	Ε
Approach Vol, veh/h	353	
Approach Delay, s/veh	68.2	
Approach LOS	Е	
Timor Assigned Dhe		
Timer - Assigned Phs		

Intersection															
Int Delay, s/veh	1														
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		ă	ተተኈ			ă	ተ ተጉ				7			#	
Traffic Vol, veh/h	6	31	1140	9	5	25	1267	17	0	0	28	0	0	56	
Future Vol, veh/h	6	31	1140	9	5	25	1267	17	0	0	28	0	0	56	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99	99	99	
Heavy Vehicles, %	0	0	3	0	0	12	4	18	0	0	0	0	0	0	
Mvmt Flow	6	31	1152	9	5	25	1280	17	0	0	28	0	0	57	
Major/Minor N	1ajor1			ľ	Major2			N	/linor1		N	/linor2			
Conflicting Flow All	947	1297	0	0	847	1161	0	0	-	-	580	-	-	648	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	5.6	5.3	-	-	5.6	5.54	-	-	-	-	7.1	-	-	7.1	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.3	3.1	-	-	2.3	3.22	-	-	-	-	3.9	-	-	3.9	
Pot Cap-1 Maneuver	478	286	-	-	543	301	-	-	0	0	396	0	0	358	
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Platoon blocked, %			-	-			-	-							
Mov Cap-1 Maneuver	300	300	-	-	323	323	-	-	-	-	396	-	-	358	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	SE				NW				NE			SW			
HCM Control Delay, s/v	0.58				0.4				14.79			16.95			
HCM LOS									В			С			
Minor Lane/Major Mvmt		VELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1						
Capacity (veh/h)		396	323	-	-	300	-	-	358						
HCM Lane V/C Ratio		0.071		-	-	0.125	-	-	0.158						
HCM Control Delay (s/v	eh)	14.8	17.3	-		18.7	-								
HCM Lane LOS		В	С	-	-	С	-	-	С						
HCM 95th %tile Q(veh)		0.2	0.3		_	0.4		_	0.6						

Intersection												
Int Delay, s/veh	8.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	*	f)		Ť	f)	
Traffic Vol., veh/h	22	14	28	134	19	21	46	199	77	24	468	41
Future Vol, veh/h	22	14	28	134	19	21	46	199	77	24	468	41
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	120	75	_	-	50	_	-
Veh in Median Storage	2.# -	0	_	_	0	-	-	0	_	-	0	-
Grade, %	-	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	9	7	4	7	0	10	13	2	0	4	1	2
Mvmt Flow	22	14	29	137	19	21	47	203	79	24	478	42
							• •	200				
Major/Minor	Minor2			Minor1		ı	Major1		ľ	Major2		
Conflicting Flow All	854	923	498	870	905	242	519	0	0	282	0	0
Stage 1	547	547	-	336	336		-	-	-		-	-
Stage 2	307	376	-	534	568	_	_	-	_	_	_	-
Critical Hdwy	7.19	6.57	6.24	7.17	6.5	6.3	4.23	-	-	4.14	-	-
Critical Hdwy Stg 1	6.19	5.57	-	6.17	5.5	-	-	-	_	-	_	-
Critical Hdwy Stg 2	6.19	5.57	-	6.17	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.581	4.063	3.336	3.563	4	3.39	2.317	-	_	2.236	_	-
Pot Cap-1 Maneuver	271	265	568	266	279	777	993	_	_	1269	-	-
Stage 1	509	509	-	668	645	-	-	-	-		-	-
Stage 2	688	608	-	521	509	-	-	-	_	_	-	-
Platoon blocked, %								-	_		_	-
Mov Cap-1 Maneuver	229	247	568	224	260	777	993	-	-	1269	-	-
Mov Cap-2 Maneuver	229	247	-	224	260	-	-	-	-	-	-	-
Stage 1	499	499	-	636	615	-	-	-	-	-	-	-
Stage 2	618	579	-	471	500	_	-	-	-	-	-	-
J.												
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v19.29			44.72			1.26			0.36		
HCM LOS	С			E								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBL _{n1} V	VBLn1V	VBL _{n2}	SBL	SBT	SBR		
Capacity (veh/h)		993	-	-	317	228	777	1269	-	-		
HCM Lane V/C Ratio		0.047	-	-	0.206	0.686	0.028	0.019	-	-		
HCM Control Delay (s/	veh)	8.8	-	-	19.3	49.5	9.8	7.9	-	-)		
HCM Lane LOS		Α	-	-	С	Е	Α	Α	-	-		
HCM 95th %tile Q(veh))	0.1	-	-	0.8	4.4	0.1	0.1	-	-)		

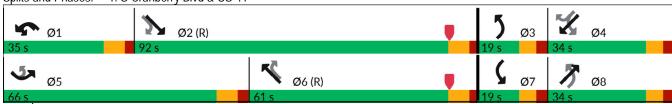
Kimley-Horn 03/14/2025

	*	•	×	7	F	×	1	7	*	Ĺ	×	*
Lane Group	SEU	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR
Lane Configurations		7	ተተተ	7	Ž	^	7	*	đ	*	↑	7
Traffic Volume (vph)	6	450	1630	119	152	1243	142	123	114	95	84	301
Future Volume (vph)	6	450	1630	119	152	1243	142	123	114	95	84	301
Lane Group Flow (vph)	0	480	1716	125	184	1308	149	129	192	100	88	317
Turn Type	custom	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	Perm
Protected Phases		5	2		1	6		3	8	7	4	
Permitted Phases	5			2			6	8		4		4
Detector Phase	5	5	2	2	1	6	6	3	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0	7.0
Minimum Split (s)	13.6	13.6	27.6	27.6	13.0	27.6	27.6	12.5	25.5	12.5	25.5	25.5
Total Split (s)	66.0	66.0	92.0	92.0	35.0	61.0	61.0	19.0	34.0	19.0	34.0	34.0
Total Split (%)	36.7%	36.7%	51.1%	51.1%	19.4%	33.9%	33.9%	10.6%	18.9%	10.6%	18.9%	18.9%
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5	4.5
All-Red Time (s)	3.0	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0	3.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5	7.5
Lead/Lag	Lead	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None	None
v/c Ratio		11.71	0.60	0.14	0.81	0.86	0.25	0.48	0.83	0.55	0.38	0.67
Control Delay (s/veh)		Error	32.6	4.1	102.7	66.6	4.1	63.9	99.0	67.8	76.2	13.8
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)		Error	32.6	4.1	102.7	66.6	4.1	63.9	99.0	67.8	76.2	13.8
Queue Length 50th (ft)		~1088	480	0	214	538	0	127	208	97	96	0
Queue Length 95th (ft)		#1333	559	39	305	600	36	192	302	154	156	101
Internal Link Dist (ft)		700	813	0.45	0.45	1018	110	400	411	045	404	0.45
Turn Bay Length (ft)		700	0000	365	365	4500	410	120	0.40	215	07/	245
Base Capacity (vph)		41	2883	885	266	1523	596	272	269	186	276	503
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		11.71	0.60	0.14	0.69	0.86	0.25	0.47	0.71	0.54	0.32	0.63

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 157 (87%), Referenced to phase 2:SET and 6:NWT, Start of Yellow


Natural Cycle: 100

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: S Cranberry Blvd & US 41

	*	•	×)	•	~	×	(7	*	~	٤
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL
Lane Configurations		Ä	^	7		Ä	^	7	*	ħ		*
Traffic Volume (veh/h)	6	450	1630	119	23	152	1243	142	123	114	68	95
Future Volume (veh/h)	6	450	1630	119	23	152	1243	142	123	114	68	95
Initial Q (Qb), veh		0	0	0		0	0	0	0	0	0	0
Lane Width Adj.		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)		1.00		1.00		1.00		1.00	1.00		1.00	1.00
Parking Bus, Adj		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach			No				No			No		
Adj Sat Flow, veh/h/ln		1885	1870	1885		1900	1885	1885	1885	1841	1900	1870
Adj Flow Rate, veh/h		474	1716	98		160	1308	75	129	120	65	100
Peak Hour Factor		0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %		1	2	1		0	1	1	1	4	0	2
Cap, veh/h		496	3095	881		181	1913	594	243	133	72	163
Arrive On Green		0.28	0.55	0.55		0.10	0.37	0.37	0.06	0.12	0.12	0.06
Sat Flow, veh/h		1795	5611	1598		1810	5147	1598	1795	1123	608	1781
Grp Volume(v), veh/h		474	1716	98		160	1308	75	129	0	185	100
Grp Sat Flow(s), veh/h/ln		1795	1870	1598		1810	1716	1598	1795	0	1731	1781
Q Serve(g_s), s		46.7	35.6	5.3		15.7	38.5	5.6	11.4	0.0	19.0	8.8
Cycle Q Clear(g_c), s		46.7	35.6	5.3		15.7	38.5	5.6	11.4	0.0	19.0	8.8
Prop In Lane		1.00	00.0	1.00		1.00	00.0	1.00	1.00	0.0	0.35	1.00
Lane Grp Cap(c), veh/h		496	3095	881		181	1913	594	243	0	206	163
V/C Ratio(X)		0.96	0.55	0.11		0.89	0.68	0.13	0.53	0.00	0.90	0.61
Avail Cap(c_a), veh/h		573	3095	881		271	1913	594	243	0.00	255	170
HCM Platoon Ratio		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	1.00	1.00
Uniform Delay (d), s/veh		64.0	26.1	19.3		80.0	47.6	37.3	65.6	0.0	78.3	66.0
Incr Delay (d2), s/veh		25.1	0.7	0.3		19.9	2.0	0.4	2.2	0.0	27.8	6.1
Initial Q Delay(d3), s/veh		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln		32.6	22.3	3.7		13.0	23.4	4.1	9.2	0.0	15.2	7.7
Unsig. Movement Delay, s/veh		02.0		0.7			20		7.2	0.0		
LnGrp Delay(d), s/veh		89.2	26.8	19.5		99.9	49.7	37.7	67.8	0.0	106.0	72.0
LnGrp LOS		F	C	В		F	D	D	E	0.0	F	E
Approach Vol, veh/h		•	2288			•	1543			314	•	
Approach Delay, s/veh			39.4				54.3			90.3		
Approach LOS			37.4 D				54.5 D			70.5 F		
••										<u>'</u>		
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	26.0	106.9	19.0	28.2	58.4	74.5	18.3	28.9				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	27.0	84.4	11.5	26.5	57.4	53.4	11.5	26.5				
Max Q Clear Time (g_c+I1), s	17.7	37.6	13.4	9.9	48.7	40.5	10.8	21.0				
Green Ext Time (p_c), s	0.3	33.5	0.0	0.5	1.0	9.8	0.0	0.4				
Intersection Summary												
HCM 7th Control Delay, s/veh			50.3					-				
HCM 7th LOS			D									
Notos												
Notes	ina me:	omont										
User approved ignoring U-Turn	mig mov	ement.										

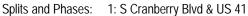
	×	*
Movement	SWT	SWR
Lane Configurations	†	7
Traffic Volume (veh/h)	84	301
Future Volume (veh/h)	84	301
Initial Q (Qb), veh	0	0
Lane Width Adj.	1.00	1.00
Ped-Bike Adj(A_pbT)		1.00
Parking Bus, Adj	1.00	1.00
Work Zone On Approach	No	
Adj Sat Flow, veh/h/ln	1885	1870
Adj Flow Rate, veh/h	88	75
Peak Hour Factor	0.95	0.95
Percent Heavy Veh, %	1	2
Cap, veh/h	216	182
Arrive On Green	0.11	0.11
Sat Flow, veh/h	1885	1585
Grp Volume(v), veh/h	88	75
Grp Sat Flow(s), veh/h/ln	1885	1585
Q Serve(q_s), s	7.8	7.9
Cycle Q Clear(g_c), s	7.8	7.9
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	216	182
V/C Ratio(X)	0.41	0.41
Avail Cap(c_a), veh/h	278	233
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	1.00
Uniform Delay (d), s/veh	74.0	74.0
Incr Delay (d2), s/veh	1.2	1.5
Initial Q Delay(d3), s/veh	0.0	0.0
%ile BackOfQ(95%),veh/ln	6.9	5.9
Unsig. Movement Delay, s/ve	eh	
LnGrp Delay(d), s/veh	75.2	75.5
LnGrp LOS	Е	Е
Approach Vol, veh/h	263	
Approach Delay, s/veh	74.1	
Approach LOS	Е	
Timer - Assigned Phs		

Intersection															
Int Delay, s/veh	2.2														
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		2.6	ተተጉ			1	444				*			7	
Traffic Vol, veh/h	14	82	1709	10	4	44	1522	10	0	0	42	0	0	53	
Future Vol, veh/h	14	82	1709	10	4	44	1522	10	0	0	42	0	0	53	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	2	2	0	0	0	1	10	0	0	0	0	0	6	
Mvmt Flow	15	86	1799	11	4	46	1602	11	0	0	44	0	0	56	
Major/Minor N	1ajor1			N	Major2			N	/linor1		N	Minor2			
Conflicting Flow All	1177	1613	0	0	1321	1809	0	0	-	-	905	-	-	806	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	5.6	5.34	-	-	5.6	5.3	-	-	-	-	7.1	-	-	7.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.3	3.12	-	-	2.3	3.1	-	-	-	-	3.9	-	-	3.96	
Pot Cap-1 Maneuver	357	196	-	-	297	160	-	-	0	0	243	0	0	272	
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Platoon blocked, %			-	-			-	-							
Mov Cap-1 Maneuver	205	205	-	-	164	164	-	-	-	-	243	-	-	272	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	SE				NW				NE			SW			
HCM Control Delay, s/v	2.04				1.1				23.07			21.61			
HCM LOS									С			С			
Minor Lane/Major Mvmt	t I	VELn1	NWL	NWT	NWR	SEL	SET	SERS	WL _{n1}						
Capacity (veh/h)		243	164	-	-	205	-	-	272						
HCM Lane V/C Ratio		0.182		-	-	0.493	-	-	0.205						
HCM Control Delay (s/v	eh)	23.1	36.3	-	-	38.5	-	-	21.6						
HCM Lane LOS		С	Е	-	-	Е	-	-	С						
HCM 95th %tile Q(veh)		0.6	1.2			2.5			0.8						

Intersection													
Int Delay, s/veh	50.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4	7	*	fa fa		ř	f)		
Traffic Vol, veh/h	22	20	15	165	29	28	55	442	215	11	300	17	
Future Vol, veh/h	22	20	15	165	29	28	55	442	215	11	300	17	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	120	75	-	-	50	-	-	
/eh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	5	0	0	4	0	7	2	1	0	0	1	0	
Mvmt Flow	25	23	17	190	33	32	63	508	247	13	345	20	
VIVIIIC I IOVV	20	20	17	170	33	32	03	300	277	10	J-10	20	
Major/Minor I	Minor2			Minor1			Major1		N	Major2			
Conflicting Flow All	1031	1261	355	1140	1148	632	364	0	0	755	0	0	
Stage 1	380	380	-	758	758	-	-	-	-	-	-	-	
Stage 2	651	882	_	382	390	_	_	_	_	_	_	_	
Critical Hdwy	7.15	6.5	6.2	7.14	6.5	6.27	4.12	-	_	4.1	_	_	
critical Hdwy Stg 1	6.15	5.5	0.2	6.14	5.5	0.27	4.12		-	4.1	-		
Critical Hdwy Stg 2	6.15	5.5	-	6.14	5.5		-	-	-	-	_	-	
	3.545		3.3	3.536		3.363	2.218	-		2.2		-	
follow-up Hdwy		4			201			-	-		-	-	
Pot Cap-1 Maneuver	209	172		~ 177		472	1194	-	-	864	-	-	
Stage 1	636	617	-	396	418	-	-	-	-	-	-	-	
Stage 2	452	367	-	637	611	-	-	-	-	-	-	-	
Platoon blocked, %	454	4/0	101	400	407	470	1101	-	-	0/4	-	-	
Mov Cap-1 Maneuver	151	160		~ 139	187	472	1194	-	-	864	-	-	
Mov Cap-2 Maneuver	151	160	-	~ 139	187	-	-	-	-	-	-	-	
Stage 1	627	608	-	375	396	-	-	-	-	-	-	-	
Stage 2	366	348	-	589	602	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s/				291.66			0.63			0.31			
HCM LOS	D			F									
								0.5.	0.5-	05-			
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I		VBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		1194	-	-	195	144	472	864	-	-			
HCM Lane V/C Ratio		0.053	-	-		1.544		0.015	-	-			
HCM Control Delay (s/	veh)	8.2	-	-		331.8	13.2	9.2	-	-			
HCM Lane LOS		Α	-	-	D	F	В	Α	-	-			
HCM 95th %tile Q(veh))	0.2	-	-	1.4	15.3	0.2	0	-	-			
Notes													
: Volume exceeds cap	pacity	\$: De	elav exc	eeds 30	00s	+: Com	putation	Not De	efined	*: All	major v	/olume i	n platoon
. Volumo onoccus cu	paoity	ψ. DC	nay one	,50 u 5 0	333	50111	Patation	, AUC DO	Jilliou	. Tul	ajor v	Jiuino I	ii piatooii

HCM 7th TWSC 03/14/2025

	•	×	7	F	×	*	7	*	٤	×	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	*	ተተተ	7	Ä	ተተተ	7	*	f)	*	†	77.75	
Traffic Volume (vph)	168	970	106	108	1170	79	115	47	132	106	394	
Future Volume (vph)	168	970	106	108	1170	79	115	47	132	106	394	
Lane Group Flow (vph)	173	1000	109	124	1206	81	119	153	136	109	406	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	pt+ov	
Protected Phases	5	2		1	6		3	8	7	4	4 5	
Permitted Phases			2			6	8		4			
Detector Phase	5	2	2	1	6	6	3	8	7	4	4 5	
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0		
Minimum Split (s)	13.6	27.6	27.6	13.0	27.6	27.6	12.5	14.5	12.5	25.5		
Total Split (s)	33.0	73.0	73.0	29.0	69.0	69.0	17.0	26.0	22.0	31.0		
Total Split (%)	22.0%	48.7%	48.7%	19.3%	46.0%	46.0%	11.3%	17.3%	14.7%	20.7%		
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5		
All-Red Time (s)	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes											
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None		
v/c Ratio	0.77	0.40	0.14	0.69	0.52	0.10	0.44	0.67	0.54	0.49	0.43	
Control Delay (s/veh)	84.9	25.8	1.7	83.4	30.7	0.2	51.5	52.8	53.3	68.6	28.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	84.9	25.8	1.7	83.4	30.7	0.2	51.5	52.8	53.3	68.6	28.3	
Queue Length 50th (ft)	165	228	0	119	311	0	93	88	107	102	123	
Queue Length 95th (ft)	245	291	16	186	383	0	150	167	168	161	160	
Internal Link Dist (ft)		813			1018			411		404		
Turn Bay Length (ft)	700		365	365		410	120					
Base Capacity (vph)	277	2483	797	237	2314	812	270	258	270	289	1006	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.62	0.40	0.14	0.52	0.52	0.10	0.44	0.59	0.50	0.38	0.40	


Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:SET and 6:NWT, Start of Yellow

Natural Cycle: 90

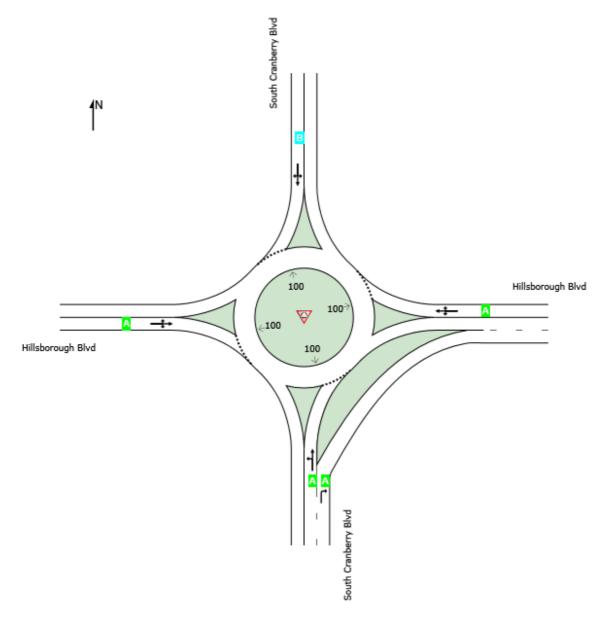
Control Type: Actuated-Coordinated

	•	×)	•	~	×	(7	1	~	Ĺ	×
Movement	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT
Lane Configurations	*	^	7		Ä	^	7	۴	f)		*	1
Traffic Volume (veh/h)	168	970	106	13	108	1170	79	115	47	102	132	106
Future Volume (veh/h)	168	970	106	13	108	1170	79	115	47	102	132	106
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1811	1856	1752		1796	1841	1870	1856	1870	1870	1900	1856
Adj Flow Rate, veh/h	173	1000	85		111	1206	51	119	48	60	136	109
Peak Hour Factor	0.97	0.97	0.97		0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	6	3	10		7	4	2	3	2	2	0	3
Cap, veh/h	196	2590	759		133	2368	747	239	98	122	281	267
Arrive On Green	0.11	0.51	0.51		0.08	0.47	0.47	0.06	0.13	0.13	0.08	0.14
Sat Flow, veh/h	1725	5066	1485		1711	5025	1585	1767	756	945	1810	1856
Grp Volume(v), veh/h	173	1000	85		111	1206	51	119	0	108	136	109
Grp Sat Flow(s), veh/h/ln	1725	1689	1485		1711	1675	1585	1767	0	1700	1810	1856
Q Serve(g_s), s	14.8	18.0	4.5		9.6	25.1	2.6	8.7	0.0	8.9	9.7	8.0
Cycle Q Clear(q_c), s	14.8	18.0	4.5		9.6	25.1	2.6	8.7	0.0	8.9	9.7	8.0
Prop In Lane	1.00	10.0	1.00		1.00	20.1	1.00	1.00	0.0	0.56	1.00	0.0
Lane Grp Cap(c), veh/h	196	2590	759		133	2368	747	239	0	220	281	267
V/C Ratio(X)	0.88	0.39	0.11		0.84	0.51	0.07	0.50	0.00	0.49	0.48	0.41
Avail Cap(c_a), veh/h	281	2590	759		240	2368	747	239	0.00	220	314	291
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	65.5	22.3	19.0		68.2	27.6	21.7	52.6	0.0	60.7	51.3	58.4
Incr Delay (d2), s/veh	19.9	0.4	0.3		12.8	0.8	0.2	1.6	0.0	1.7	1.3	1.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	12.0	11.5	2.9		8.1	15.1	1.8	7.1	0.0	7.0	7.9	6.9
Unsig. Movement Delay, s/veh			,		0			7	0.0			0.7
LnGrp Delay(d), s/veh	85.4	22.8	19.3		81.0	28.4	21.9	54.2	0.0	62.4	52.6	59.4
LnGrp LOS	F	С	В		F	С	С	D		Е	D	E
Approach Vol, veh/h	•	1258			•	1368			227			651
Approach Delay, s/veh		31.1				32.4			58.1			51.7
Approach LOS		C				C			50.1 E			D
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	19.6	84.3	17.0	29.1	25.7	78.3	19.2	26.9				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	21.0	65.4	9.5	23.5	24.4	61.4	14.5	18.5				
Max Q Clear Time (g_c+l1), s	11.6	20.0	10.7	21.0	16.8	27.1	11.7	10.9				
Green Ext Time (p_c), s	0.2	17.2	0.0	0.6	0.2	18.5	0.1	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			37.2									
HCM 7th LOS			D									
Notes												
	ina ma	omont										
User approved ignoring U-Turn	miy mov	ement.										

Movement	SWR
Lane Configurations	77.75
Traffic Volume (veh/h)	394
Future Volume (veh/h)	394
Initial Q (Qb), veh	0
Lane Width Adj.	1.00
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1870
Adj Flow Rate, veh/h	406
Peak Hour Factor	0.97
Percent Heavy Veh, %	2
Cap, veh/h	718
Arrive On Green	0.14
Sat Flow, veh/h	2790
Grp Volume(v), veh/h	406
Grp Sat Flow(s), veh/h/ln	1395
Q Serve(q_s), s	19.0
Cycle Q Clear(g_c), s	19.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	718
V/C Ratio(X)	0.57
Avail Cap(c_a), veh/h	754
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	48.4
	0.9
Incr Delay (d2), s/veh Initial Q Delay(d3), s/veh	0.9
%ile BackOfQ(95%),veh/ln	10.9
Unsig. Movement Delay, s/veh	
LnGrp Delay(d), s/veh	49.3
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Intersection															
Int Delay, s/veh	1														
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		ă	ተተቡ			ă	444				7			7	
Traffic Vol, veh/h	6	32	1163	9	5	26	1292	17	0	0	29	0	0	57	
Future Vol, veh/h	6	32	1163	9	5	26	1292	17	0	0	29	0	0	57	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99	99	99	
Heavy Vehicles, %	0	0	3	0	0	12	4	18	0	0	0	0	0	0	
Mvmt Flow	6	32	1175	9	5	26	1305	17	0	0	29	0	0	58	
Major/Minor M	ajor1			<u> </u>	Major2			N	/linor1		<u> </u>	Vinor2			
Conflicting Flow All	965	1322	0	0	864	1184	0	0	-	-	592	-	-	661	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	5.6	5.3	-	-	5.6	5.54	-	-	-	-	7.1	-	-	7.1	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.3	3.1	-	-	2.3	3.22	-	-	-	-	3.9	-	-	3.9	
Pot Cap-1 Maneuver	467	278	-	-	531	293	-	-	0	0	389	0	0	351	
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Platoon blocked, %			-	-			-	-							
Mov Cap-1 Maneuver	291	291	-	-	314	314	-	-	-	-	389	-	-	351	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	SE				NW				NE			SW			
HCM Control Delay, s/v	0.6				0.41				15			17.26			
HCM LOS									С			С			
Minor Lane/Major Mvmt		NELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1						
Capacity (veh/h)		389	314	-	-	291	-	-	351						
HCM Lane V/C Ratio		0.075	0.1	-	-	0.132	-	-	0.164						
HCM Control Delay (s/v	eh)	15	17.8	-			-								
HCM Lane LOS		С	С	-	-	С	-	-	С						
HCM 95th %tile Q(veh)		0.2	0.3		_	0.4		_	0.6						

LANE LEVEL OF SERVICE


Lane Level of Service

▼ Site: 1 [2026 Background AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

		Appro	aches		Intersection
	South	East	North	West	Intersection
LOS	Α	Α	В	Α	Α

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Friday, March 7, 2025 3:21:49 PM

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro
\Project2.sip9

MOVEMENT SUMMARY

♥ Site: 1 [2026 Background AM (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

Mov No No No No No No No	Vehic	cle Mo	ovemen	t Perfo	rma	nce										
South: South Cranberry Blvd South South		Turn														
South: South Cranberry Blvc 3	ID		Class					Satn	Delay	Service			Que			Speed
South: South: Various Blow 3 L2 All MCs 51 13.0 51 13.0 0.213 5.2 LOS A 1.0 25.2 0.20 0.08 0.20 32.8 8 T1 All MCs 221 2.0 0.21 2.0 0.213 4.4 LOS A 1.0 25.2 0.20 0.08 0.20 33.8 18 R2 All MCs 86 0.0 0.0 0.051 0.0 LOS A 0.0 0.0 0.00								v/c	sec					Rate	Cycles	mph
8	South	: Sout	h Cranbe				,,	.,,								
18 R2 All MCs 86 0.0 86 0.0 0.051 0.0 LOS A 0.0 0.0 0.00 0.00 0.00 0.00 36.7 Approach 358 3.1 358 3.1 0.213 3.5 LOS A 1.0 25.2 0.15 0.06 0.15 34.3 East: Hillsborough Blvd 1 L2 All MCs 149 7.0 149 7.0 0.207 5.9 LOS A 0.9 23.7 0.47 0.32 0.47 32.3 6 T1 All MCs 21 0.0 21 0.0 0.207 5.2 LOS A 0.9 23.7 0.47 0.32 0.47 33.9 16 R2 All MCs 23 10.0 23 10.0 0.207 6.2 LOS A 0.9 23.7 0.47 0.32 0.47 32.4 Approach 192 6.6 192 6.6 0.207 5.9 LOS A 0.9 23.7 0.47 0.32 0.47 32.5 North: South Cranberry Blvd <td>3</td> <td>L2</td> <td>All MCs</td> <td>51</td> <td>13.0</td> <td>51</td> <td>13.0</td> <td>0.213</td> <td>5.2</td> <td>LOSA</td> <td>1.0</td> <td>25.2</td> <td>0.20</td> <td>0.08</td> <td>0.20</td> <td>32.8</td>	3	L2	All MCs	51	13.0	51	13.0	0.213	5.2	LOSA	1.0	25.2	0.20	0.08	0.20	32.8
Approach	8	T1	All MCs	221	2.0	221	2.0	0.213	4.4	LOSA	1.0	25.2	0.20	0.08	0.20	33.8
East: Hillsborough Blvd 1	18	R2	All MCs	86	0.0	86	0.0	0.051	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	36.7
L2 All MCs	Appro	ach		358	3.1	358	3.1	0.213	3.5	LOSA	1.0	25.2	0.15	0.06	0.15	34.3
6 T1 All MCs 21 0.0 21 0.0 0.207 5.2 LOS A 0.9 23.7 0.47 0.32 0.47 33.9 16 R2 All MCs 23 10.0 23 10.0 0.207 6.2 LOS A 0.9 23.7 0.47 0.32 0.47 32.4 Approach 192 6.6 192 6.6 0.207 5.9 LOS A 0.9 23.7 0.47 0.32 0.47 32.5 North: South Cranberry Blvd 7 L2 All MCs 26 4.0 26 4.0 0.553 10.3 LOS B 4.2 105.0 0.62 0.39 0.65 30.9 4 T1 All MCs 518 1.0 518 1.0 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.6 14 R2 All MCs 46 2.0 46 2.0 0.553 10.1 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.5 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	East:	Hillsbo	orough Bl	vd												
16 R2 All MCs 23 10.0 23 10.0 0.207 6.2 LOS A 0.9 23.7 0.47 0.32 0.47 32.4 Approach 192 6.6 192 6.6 0.207 5.9 LOS A 0.9 23.7 0.47 0.32 0.47 32.5 North: South Cranberry Blvd 7 L2 All MCs 26 4.0 26 4.0 0.553 10.3 LOS B 4.2 105.0 0.62 0.39 0.65 30.9 4 T1 All MCs 518 1.0 518 1.0 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.6 14 R2 All MCs 46 2.0 46 2.0 0.553 10.1 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.5 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.6	1	L2	All MCs	149	7.0	149	7.0	0.207	5.9	LOSA	0.9	23.7	0.47	0.32	0.47	32.3
Approach	6	T1	All MCs	21	0.0	21	0.0	0.207	5.2	LOSA	0.9	23.7	0.47	0.32	0.47	33.9
North: South Cranberry Blvd 7	16	R2	All MCs	23	10.0	23	10.0	0.207	6.2	LOS A	0.9	23.7	0.47	0.32	0.47	32.4
7 L2 All MCs 26 4.0 26 4.0 0.553 10.3 LOS B 4.2 105.0 0.62 0.39 0.65 30.9 4 T1 All MCs 518 1.0 518 1.0 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.6 14 R2 All MCs 46 2.0 46 2.0 0.553 10.1 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6	Appro	ach		192	6.6	192	6.6	0.207	5.9	LOSA	0.9	23.7	0.47	0.32	0.47	32.5
4 T1 All MCs 518 1.0 518 1.0 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.6 14 R2 All MCs 46 2.0 46 2.0 0.553 10.1 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.5 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 12 R2 All MCs 32 4.0 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	North	: South	h Cranbe	rry Blvd												
14 R2 All MCs 46 2.0 46 2.0 0.553 10.1 LOS B 4.2 105.0 0.62 0.39 0.65 31.3 Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.5 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 12 R2 All MCs 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	7	L2	All MCs	26	4.0	26	4.0	0.553	10.3	LOS B	4.2	105.0	0.62	0.39	0.65	30.9
Approach 590 1.2 590 1.2 0.553 10.0 LOS B 4.2 105.0 0.62 0.39 0.65 31.5 West: Hillsborough Blvd 5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 12 R2 All MCs 32 4.0 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	4	T1	All MCs	518	1.0	518	1.0	0.553	10.0	LOS B	4.2	105.0	0.62	0.39	0.65	31.6
West: Hillsborough Blvd 5	14	R2	All MCs	46	2.0	46	2.0	0.553	10.1	LOS B	4.2	105.0	0.62	0.39	0.65	31.3
5 L2 All MCs 24 9.0 24 9.0 0.117 7.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.5 2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 12 R2 All MCs 32 4.0 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	Appro	ach		590	1.2	590	1.2	0.553	10.0	LOS B	4.2	105.0	0.62	0.39	0.65	31.5
2 T1 All MCs 15 7.0 15 7.0 0.117 7.5 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 12 R2 All MCs 32 4.0 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	West	Hillsb	orough B	lvd												
12 R2 All MCs 32 4.0 32 4.0 0.117 6.9 LOS A 0.4 11.0 0.61 0.55 0.61 22.6 Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	5	L2	All MCs	24	9.0	24	9.0	0.117	7.9	LOSA	0.4	11.0	0.61	0.55	0.61	22.5
Approach 71 6.3 71 6.3 0.117 7.3 LOS A 0.4 11.0 0.61 0.55 0.61 22.5	2	T1	All MCs	15	7.0	15	7.0	0.117	7.5	LOSA	0.4	11.0	0.61	0.55	0.61	22.6
	12	R2	All MCs	32	4.0	32	4.0	0.117	6.9	LOSA	0.4	11.0	0.61	0.55	0.61	22.6
All Vehicles 1211 2.9 1211 2.9 0.553 7.3 LOS A 4.2 105.0 0.46 0.29 0.47 31.7	Appro	ach		71	6.3	71	6.3	0.117	7.3	LOSA	0.4	11.0	0.61	0.55	0.61	22.5
	All Ve	hicles		1211	2.9	1211	2.9	0.553	7.3	LOSA	4.2	105.0	0.46	0.29	0.47	31.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

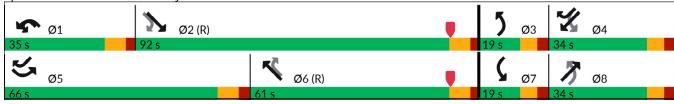
Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Friday, March 7, 2025 3:21:49 PM Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \Project2.sip9

	•	×	7	~	×	1	7	*	٤	×	~	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	*	ተተተ	7	Ä	ተተተ	7	*	fə	*	↑	77.75	
Traffic Volume (vph)	465	1663	121	155	1268	145	125	116	97	86	307	
Future Volume (vph)	465	1663	121	155	1268	145	125	116	97	86	307	
Lane Group Flow (vph)	489	1751	127	187	1335	153	132	195	102	91	323	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	pt+ov	
Protected Phases	5	2		1	6		3	8	7	4	4 5	
Permitted Phases			2			6	8		4			
Detector Phase	5	2	2	1	6	6	3	8	7	4	4 5	
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0		
Minimum Split (s)	13.6	27.6	27.6	13.0	27.6	27.6	12.5	25.5	12.5	25.5		
Total Split (s)	66.0	92.0	92.0	35.0	61.0	61.0	19.0	34.0	19.0	34.0		
Total Split (%)	36.7%	51.1%	51.1%	19.4%	33.9%	33.9%	10.6%	18.9%	10.6%	18.9%		
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5		
All-Red Time (s)	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes											
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None		
v/c Ratio	0.93	0.61	0.14	0.82	0.75	0.23	0.49	0.84	0.56	0.39	0.24	
Control Delay (s/veh)	86.4	33.2	4.1	103.4	57.0	4.4	64.3	99.4	68.5	76.3	16.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	86.4	33.2	4.1	103.4	57.0	4.4	64.3	99.4	68.5	76.3	16.4	
Queue Length 50th (ft)	552	498	0	218	535	0	130	212	98	100	72	
Queue Length 95th (ft)	#739	575	40	310	616	41	195	307	155	161	103	
Internal Link Dist (ft)		813			1018			411		404		
Turn Bay Length (ft)	700		365	365		410	120					
Base Capacity (vph)	569	2871	883	266	1769	664	271	269	186	276	1412	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.86	0.61	0.14	0.70	0.75	0.23	0.49	0.72	0.55	0.33	0.23	

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 157 (87%), Referenced to phase 2:SET and 6:NWT, Start of Yellow


Natural Cycle: 120

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: S Cranberry Blvd & US 41

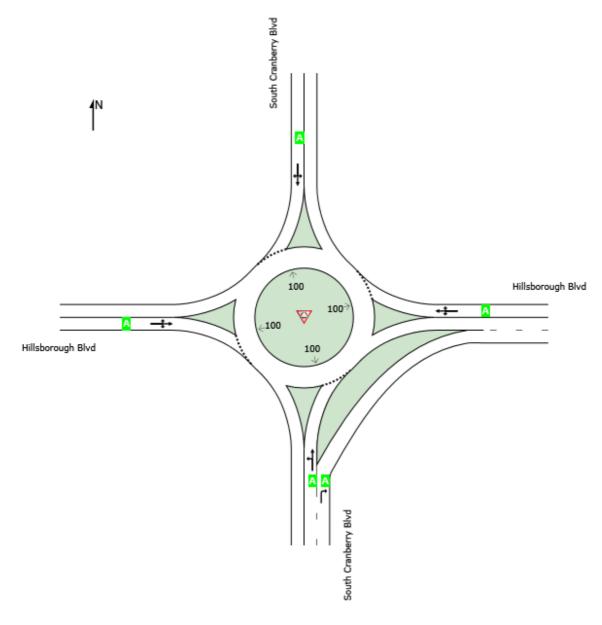
Timings 03/14/2025

	•	×	Ì	•	×	×	(7	1	~	Ĺ	×
Movement	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT
Lane Configurations	*	^	*		Ä	^	*	*	e‡		ň	1
Traffic Volume (veh/h)	465	1663	121	23	155	1268	145	125	116	69	97	86
Future Volume (veh/h)	465	1663	121	23	155	1268	145	125	116	69	97	86
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1885	1870	1885		1900	1885	1885	1885	1841	1900	1870	1885
Adj Flow Rate, veh/h	489	1751	100		163	1335	79	132	122	66	102	91
Peak Hour Factor	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	2	1		0	1	1	1	4	0	2	1
Cap, veh/h	511	3072	875		184	1859	577	243	135	73	164	221
Arrive On Green	0.28	0.55	0.55		0.10	0.36	0.36	0.06	0.12	0.12	0.06	0.12
Sat Flow, veh/h	1795	5611	1598		1810	5147	1598	1795	1124	608	1781	1885
Grp Volume(v), veh/h	489	1751	100		163	1335	79	132	0	188	102	91
Grp Sat Flow(s), veh/h/ln	1795	1870	1598		1810	1716	1598	1795	0	1731	1781	1885
Q Serve(q_s), s	48.2	37.0	5.4		16.0	40.3	6.0	11.5	0.0	19.3	9.0	8.1
Cycle Q Clear(g_c), s	48.2	37.0	5.4		16.0	40.3	6.0	11.5	0.0	19.3	9.0	8.1
Prop In Lane	1.00		1.00		1.00		1.00	1.00		0.35	1.00	
Lane Grp Cap(c), veh/h	511	3072	875		184	1859	577	243	0	208	164	221
V/C Ratio(X)	0.96	0.57	0.11		0.89	0.72	0.14	0.54	0.00	0.90	0.62	0.41
Avail Cap(c_a), veh/h	573	3072	875		271	1859	577	243	0	255	170	278
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	63.3	26.8	19.7		79.9	49.6	38.6	65.5	0.0	78.1	65.6	73.7
Incr Delay (d2), s/veh	26.0	8.0	0.3		20.6	2.4	0.5	2.5	0.0	28.4	6.5	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	33.6	23.0	3.8		13.2	24.3	4.4	9.4	0.0	15.5	7.8	7.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	89.4	27.6	19.9		100.5	52.0	39.1	67.9	0.0	106.5	72.1	74.9
LnGrp LOS	F	С	В		F	D	D	Е		F	Е	Е
Approach Vol, veh/h		2340				1577			320			274
Approach Delay, s/veh		40.2				56.4			90.6			61.5
Approach LOS		D				Е			F			Е
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	26.3	106.1	19.0	28.6	59.8	72.6	18.4	29.2				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	27.0	84.4	11.5	26.5	57.4	53.4	11.5	26.5				
Max Q Clear Time (g_c+I1), s	18.0	39.0	13.5	10.1	50.2	42.3	11.0	21.3				
Green Ext Time (p_c), s	0.3	33.5	0.0	0.6	1.0	8.8	0.0	0.4				
Intersection Summary												
HCM 7th Control Delay, s/veh			50.7									
HCM 7th LOS			D									
Notes												
User approved ignoring U-Turr	ning mov	ement.										

Movement	SWR
Lane Configurations	77.77
Traffic Volume (veh/h)	307
Future Volume (veh/h)	307
Initial Q (Qb), veh	0
Lane Width Adj.	1.00
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1870
Adj Flow Rate, veh/h	81
Peak Hour Factor	0.95
Percent Heavy Veh, %	2
Cap, veh/h	1120
Arrive On Green	0.12
Sat Flow, veh/h	2790
Grp Volume(v), veh/h	81
	1395
Grp Sat Flow(s), veh/h/ln	
Q Serve(g_s), s	3.2
Cycle Q Clear(g_c), s	3.2
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	1120
V/C Ratio(X)	0.07
Avail Cap(c_a), veh/h	1204
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	33.2
Incr Delay (d2), s/veh	0.0
Initial Q Delay(d3), s/veh	0.0
%ile BackOfQ(95%),veh/ln	2.0
Unsig. Movement Delay, s/vel	
LnGrp Delay(d), s/veh	33.2
LnGrp LOS	С
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
· ·	
Timer - Assigned Phs	

Intersection															
Int Delay, s/veh	2.3														
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		ă	ተተጉ				ተ ተጉ				7			*	
Traffic Vol, veh/h	14	84	1743	10	4	45	1552	10	0	0	43	0	0	54	
Future Vol, veh/h	14	84	1743	10	4	45	1552	10	0	0	43	0	0	54	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0	
Veh in Median Storage,	# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	2	2	0	0	0	1	10	0	0	0	0	0	6	
Mvmt Flow	15	88	1835	11	4	47	1634	11	0	0	45	0	0	57	
Major/Minor N	1ajor1			N	Major2			N	/linor1		N	Minor2			
Conflicting Flow All	1200	1644	0	0	1347	1845	0	0	-	-	923	-	-	822	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	5.6	5.34	-	-	5.6	5.3	-	-	-	-	7.1	-	-	7.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.3	3.12	-	-	2.3	3.1	-	-	-	-	3.9	-	-	3.96	
Pot Cap-1 Maneuver	346	189	-	-	287	153	-	-	0	0	237	0	0	266	
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Platoon blocked, %			-	-			-	-							
Mov Cap-1 Maneuver	198	198	-	-	158	158	-	-	-	-	237	-	-	266	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	SE				NW				NE			SW			
HCM Control Delay, s/v	2.2				1.17				23.78			22.21			
HCM LOS									С			С			
Minor Lane/Major Mvmt	1	NELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1						
Capacity (veh/h)		237	158	-	-	198	-		266						
HCM Lane V/C Ratio			0.327	-	-	0.522	-	-	0.214						
HCM Control Delay (s/v	eh)	23.8	38.6	-	-	41.6	-	-	22.2						
HCM Lane LOS		С	Е	-	-	Е	-	-	С						
HCM 95th %tile Q(veh)		0.7	1.3	_	_	2.7	_	-	0.8						

LANE LEVEL OF SERVICE


Lane Level of Service

▼ Site: 1 [2026 Background PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

		Appro	aches		Intersection
	South	East	North	West	Intersection
LOS	Α	Α	Α	Α	Α

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Friday, March 7, 2025 3:21:49 PM

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro
\Project2.sip9

MOVEMENT SUMMARY

♥ Site: 1 [2026 Background PM (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce		_								
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] ft	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
South	ı: Sout	h Cranbe	rry Blvc	l											
3	L2	All MCs	61	2.0	61	2.0	0.414	6.4	LOSA	2.6	65.1	0.24	0.09	0.24	32.4
8	T1	All MCs	490	1.0	490	1.0	0.414	6.4	LOSA	2.6	65.1	0.24	0.09	0.24	33.1
18	R2	All MCs	238	0.0	238	0.0	0.142	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	36.7
Appro	oach		789	8.0	789	8.0	0.414	4.5	LOSA	2.6	65.1	0.17	0.06	0.17	34.0
East:	Hillsbo	orough Bl	vd												
1	L2	All MCs	183	4.0	183	4.0	0.344	9.3	LOSA	1.6	40.7	0.66	0.56	0.69	31.3
6	T1	All MCs	33	0.0	33	0.0	0.344	8.6	LOSA	1.6	40.7	0.66	0.56	0.69	32.4
16	R2	All MCs	32	7.0	32	7.0	0.344	9.8	LOSA	1.6	40.7	0.66	0.56	0.69	31.3
Appro	oach		247	3.9	247	3.9	0.344	9.3	LOSA	1.6	40.7	0.66	0.56	0.69	31.4
North	: Soutl	n Cranbei	ry Blvd												
7	L2	All MCs	12	0.0	12	0.0	0.356	7.1	LOSA	1.9	48.5	0.52	0.34	0.52	32.3
4	T1	All MCs	333	1.0	333	1.0	0.356	7.2	LOSA	1.9	48.5	0.52	0.34	0.52	32.9
14	R2	All MCs	18	0.0	18	0.0	0.356	7.1	LOSA	1.9	48.5	0.52	0.34	0.52	32.7
Appro	oach		363	0.9	363	0.9	0.356	7.2	LOSA	1.9	48.5	0.52	0.34	0.52	32.9
West	Hillsb	orough B	lvd												
5	L2	All MCs	24	5.0	24	5.0	0.080	5.9	LOSA	0.3	8.0	0.54	0.44	0.54	22.9
2	T1	All MCs	22	0.0	22	0.0	0.080	5.2	LOSA	0.3	8.0	0.54	0.44	0.54	23.0
12	R2	All MCs	16	0.0	16	0.0	0.080	5.2	LOSA	0.3	8.0	0.54	0.44	0.54	23.0
Appro	oach		62	1.9	62	1.9	0.080	5.4	LOSA	0.3	8.0	0.54	0.44	0.54	23.0
All Ve	hicles		1461	1.4	1461	1.4	0.414	6.0	LOSA	2.6	65.1	0.36	0.23	0.36	32.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

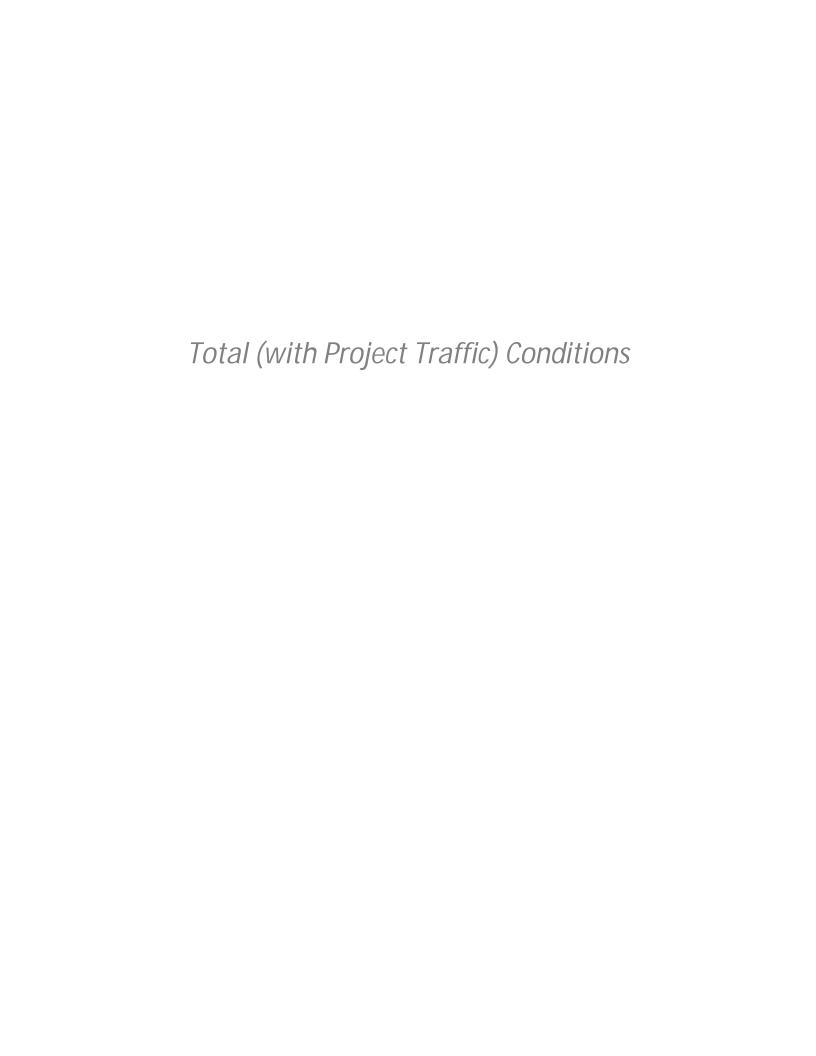
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.


Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Friday, March 7, 2025 3:21:49 PM Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \Project2.sip9

1: S Cranberry	Blvd 8	& US	41

	4	×	7	~	×	(7	1	٤	×	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	ሻሻ	ተተተ	7	¥	ተተተ	*	*	fa fa	ř	^	77.77	
Traffic Volume (vph)	234	975	106	108	1246	79	115	69	195	142	414	
Future Volume (vph)	234	975	106	108	1246	79	115	69	195	142	414	
Lane Group Flow (vph)	241	1005	109	124	1285	81	119	181	201	146	427	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	pt+ov	
Protected Phases	5	2		1	6		3	8	7	4	4 5	
Permitted Phases			2			6	8		4			
Detector Phase	5	2	2	1	6	6	3	8	7	4	4 5	
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0		
Minimum Split (s)	13.6	27.6	27.6	13.0	27.6	27.6	12.5	14.5	12.5	25.5		
Total Split (s)	33.0	73.0	73.0	29.0	69.0	69.0	17.0	26.0	22.0	31.0		
Total Split (%)	22.0%	48.7%	48.7%	19.3%	46.0%	46.0%	11.3%	17.3%	14.7%	20.7%		
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5		
All-Red Time (s)	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes									
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None		
v/c Ratio	0.66	0.42	0.14	0.69	0.55	0.10	0.47	0.82	0.76	0.54	0.45	
Control Delay (s/veh)	72.7	27.5	1.7	83.4	30.8	0.2	50.7	77.5	64.3	67.0	30.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	72.7	27.5	1.7	83.4	30.8	0.2	50.7	77.5	64.3	67.0	30.2	
Queue Length 50th (ft)	119	252	0	119	349	0	87	134	155	131	133	
Queue Length 95th (ft)	160	292	16	186	400	0	150	#240	#241	208	182	
Internal Link Dist (ft)		813			1018			411		404		
Turn Bay Length (ft)	700		365	365		410	120					
Base Capacity (vph)	537	2387	772	237	2323	814	257	245	267	293	1073	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.45	0.42	0.14	0.52	0.55	0.10	0.46	0.74	0.75	0.50	0.40	

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:SET and 6:NWT, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: S Cranberry Blvd & US 41

Timings 03/14/2025

Kimley-Horn

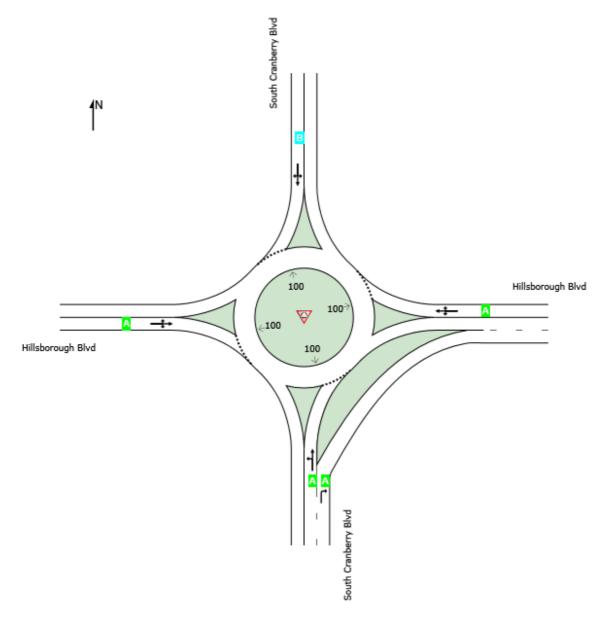
	•	×	1	•	~	×	(7	*	~	4	×
Movement	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT
Lane Configurations	J. J.	^	7*		Ä	^	7	*	đ		*	^
Traffic Volume (veh/h)	234	975	106	13	108	1246	79	115	69	107	195	142
Future Volume (veh/h)	234	975	106	13	108	1246	79	115	69	107	195	142
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1811	1856	1752		1796	1841	1870	1856	1870	1870	1900	1856
Adj Flow Rate, veh/h	241	1005	85		111	1285	51	119	71	65	201	146
Peak Hour Factor	0.97	0.97	0.97		0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	6	3	10		7	4	2	3	2	2	0	3
Cap, veh/h	295	2546	746		133	2453	774	227	107	98	278	283
Arrive On Green	0.09	0.50	0.50		0.08	0.49	0.49	0.06	0.12	0.12	0.10	0.15
Sat Flow, veh/h	3346	5066	1485		1711	5025	1585	1767	899	823	1810	1856
Grp Volume(v), veh/h	241	1005	85		111	1285	51	119	0	136	201	146
Grp Sat Flow(s),veh/h/ln	1673	1689	1485		1711	1675	1585	1767	0	1722	1810	1856
Q Serve(g_s), s	10.6	18.5	4.5		9.6	26.4	2.6	8.9	0.0	11.3	14.5	10.9
Cycle Q Clear(g_c), s	10.6	18.5	4.5		9.6	26.4	2.6	8.9	0.0	11.3	14.5	10.9
Prop In Lane	1.00		1.00		1.00		1.00	1.00		0.48	1.00	
Lane Grp Cap(c), veh/h	295	2546	746		133	2453	774	227	0	205	278	283
V/C Ratio(X)	0.82	0.39	0.11		0.84	0.52	0.07	0.53	0.00	0.66	0.72	0.52
Avail Cap(c_a), veh/h	544	2546	746		240	2453	774	227	0	212	278	291
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	67.2	23.1	19.7		68.2	26.4	20.3	53.9	0.0	63.2	52.5	58.5
Incr Delay (d2), s/veh	5.6	0.5	0.3		12.8	0.8	0.2	2.2	0.0	7.2	8.9	1.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	8.3	11.7	2.9		8.1	15.7	1.8	7.3	0.0	9.1	11.7	8.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	72.8	23.6	20.0		81.0	27.2	20.5	56.1	0.0	70.4	61.4	60.0
LnGrp LOS	Ε	С	В		F	С	С	Е		Е	Е	Ε
Approach Vol, veh/h		1331				1447			255			774
Approach Delay, s/veh		32.3				31.1			63.7			56.5
Approach LOS		С				С			Е			Е
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	19.6	83.0	17.0	30.4	21.8	80.8	22.0	25.4				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	21.0	65.4	9.5	23.5	24.4	61.4	14.5	18.5				
Max Q Clear Time (g_c+l1), s	11.6	20.5	10.9	22.6	12.6	28.4	16.5	13.3				
Green Ext Time (p_c), s	0.2	17.2	0.0	0.3	0.6	19.4	0.0	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			38.9									
HCM 7th LOS			J0.7									
Notes												
User approved ignoring U-Turr	nina mov	/ement										
Oser approved ignoring O-Tun	mig illu	CITICITI.										

Movement	SWR
Lane Configurations	77.77
Traffic Volume (veh/h)	414
Future Volume (veh/h)	414
Initial Q (Qb), veh	0
Lane Width Adj.	1.00
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1870
Adj Flow Rate, veh/h	427
Peak Hour Factor	0.97
Percent Heavy Veh, %	2
Cap, veh/h	671
Arrive On Green	0.15
Sat Flow, veh/h	2790
Grp Volume(v), veh/h	427
Grp Sat Flow(s), veh/h/ln	1395
Q Serve(q_s), s	20.6
Cycle Q Clear(g_c), s	20.6
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	671
V/C Ratio(X)	0.64
Avail Cap(c_a), veh/h	683
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	51.1
Incr Delay (d2), s/veh	1.9
Initial Q Delay(d3), s/veh	0.0
%ile BackOfQ(95%),veh/ln	11.8
Unsig. Movement Delay, s/veh	
LnGrp Delay(d), s/veh	53.0
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
··	
Timer - Assigned Phs	

Intersection														
Int Delay, s/veh	1.9													
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		Ž	ተተኩ			Ä	444				7			7
Traffic Vol, veh/h	6	42	1226	9	5	26	1277	78	0	0	29	0	0	140
Future Vol, veh/h	6	42	1226	9	5	26	1277	78	0	0	29	0	0	140
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0
Veh in Median Storage,	,# -	-	0	-	-	-	0	-	-	0	-	-	0	-
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	0	0	3	0	0	12	4	18	0	0	0	0	0	0
Mvmt Flow	6	42	1238	9	5	26	1290	79	0	0	29	0	0	141
Major/Minor N	Najor1			1	Major2			Λ	/linor1		1	Minor2		
Conflicting Flow All	999	1369	0	0	911	1247	0	0	-	-	624	-	-	684
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	5.6	5.3	-	-	5.6	5.54	-	-	-	-	7.1	-	-	7.1
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	2.3	3.1	-	-	2.3	3.22	-	-	-	-	3.9	-	-	3.9
Pot Cap-1 Maneuver	448	264	-	-	501	272	-	-	0	0	371	0	0	339
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %	0/0	0/0	-	-	004	004	-	-			074			000
Mov Cap-1 Maneuver	263	263	-	-	291	291	-	-	-	-	371	-	-	339
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Approach	SE				NW				NE			SW		
HCM Control Delay, s/v	0.81				0.42				15.53			23.01		
HCM LOS									С			С		
Minor Lane/Major Mvm	t ſ	VELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1					
Capacity (veh/h)		371	291	-	-	263	-	-	339					
HCM Lane V/C Ratio		0.079	0.107	-	-		-	-	0.417					
LIONA O L LD L / L									0.0					
HCM Control Delay (s/v		15.5	18.8	-	-	21.7	-	-	23					
HCM Control Delay (s/V HCM Lane LOS HCM 95th %tile Q(veh)	/eh)	15.5 C 0.3	18.8 C 0.4	-	-	21.7 C 0.7	-	-	C 23					

Intersection						
Int Delay, s/veh	0.3					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations			ተተጉ			7
Traffic Vol, veh/h	0	1283	1383	41	0	49
Future Vol, veh/h	0	1283	1383	41	0	49
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	_	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, #	# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	3	4	2	0	2
Mvmt Flow	0	1336	1441	43	0	51
IVIVIIIC I IOVV	U	1000	1771	73	U	31
	ajor1		Major2		/linor2	7.10
Conflicting Flow All	-	0	-	0	-	742
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	-	0	307
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	307
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	_	-	-	-	-
A	C F		N.D.A.C		CVA	
Approach	SE		NW		SW	
HCM Control Delay, s/v	0		0		19.02	
HCM LOS					С	
Minor Lane/Major Mvmt		NWT	NWR	SETS	WI n1	
Capacity (veh/h)		-		JL 13	307	
HCM Lane V/C Ratio		-	-		0.166	
HCM Control Delay (s/ve	(h)		-			
HCM Lane LOS	11)	<u>-</u>	<u> </u>	-	C	
HCM 95th %tile Q(veh)		-	-		0.6	
How four four Q(ven)					0.0	

LANE LEVEL OF SERVICE


Lane Level of Service

▼ Site: 1 [2026 Buildout AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

		Appro	aches		Intersection
	South	East	North	West	Intersection
LOS	Α	Α	В	Α	Α

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Thursday, March 13, 2025 6:53:25
PM

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \SIDRA\Project2.sip9

MOVEMENT SUMMARY

W Site: 1 [2026 Buildout AM (Site Folder: General)]
Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None)

Roundabout

Vehi	cle Mo	ovemen	t Perfo	rmaı	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows HV 1	Fi Total]	lows HV 1	Satn	Delay	Service	્રા [Veh.	ueue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	ft				mph
South	: Sout	h Cranbe	rry Blvc	l											
3	L2	All MCs	51	13.0	51	13.0	0.215	5.3	LOSA	1.0	25.4	0.22	0.09	0.22	32.7
8	T1	All MCs	221	2.0	221	2.0	0.215	4.5	LOSA	1.0	25.4	0.22	0.09	0.22	33.8
18	R2	All MCs	182	0.0	182	0.0	0.108	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	36.7
Appro	ach		453	2.4	453	2.4	0.215	2.8	LOSA	1.0	25.4	0.13	0.05	0.13	34.7
East:	Hillsbo	orough Bl	vd												
1	L2	All MCs	278	7.0	278	7.0	0.366	7.9	LOSA	1.8	48.5	0.55	0.37	0.55	31.3
6	T1	All MCs	21	0.0	21	0.0	0.366	7.1	LOSA	1.8	48.5	0.55	0.37	0.55	32.8
16	R2	All MCs	40	10.0	40	10.0	0.366	8.2	LOSA	1.8	48.5	0.55	0.37	0.55	31.4
Appro	ach		339	6.9	339	6.9	0.366	7.9	LOSA	1.8	48.5	0.55	0.37	0.55	31.4
North	: Soutl	n Cranbe	rry Blvd												
7	L2	All MCs	39	4.0	39	4.0	0.652	14.3	LOS B	7.6	193.0	0.79	0.76	1.24	29.3
4	T1	All MCs	518	1.0	518	1.0	0.652	13.9	LOS B	7.6	193.0	0.79	0.76	1.24	29.9
14	R2	All MCs	46	2.0	46	2.0	0.652	14.0	LOS B	7.6	193.0	0.79	0.76	1.24	29.7
Appro	ach		603	1.3	603	1.3	0.652	13.9	LOS B	7.6	193.0	0.79	0.76	1.24	29.9
West	Hillsb	orough B	lvd												
5	L2	All MCs	24	9.0	24	9.0	0.139	9.6	LOSA	0.5	12.6	0.65	0.62	0.65	22.1
2	T1	All MCs	15	7.0	15	7.0	0.139	9.0	LOSA	0.5	12.6	0.65	0.62	0.65	22.3
12	R2	All MCs	32	4.0	32	4.0	0.139	8.3	LOSA	0.5	12.6	0.65	0.62	0.65	22.2
Appro	ach		71	6.3	71	6.3	0.139	8.9	LOSA	0.5	12.6	0.65	0.62	0.65	22.2
All Ve	hicles		1466	3.2	1466	3.2	0.652	8.8	LOSA	7.6	193.0	0.52	0.44	0.71	31.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Thursday, March 13, 2025 6:53:25

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \SIDRA\Project2.sip9

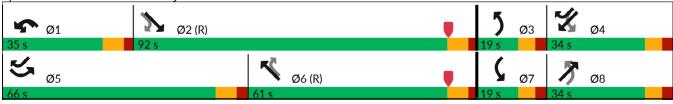
-	
1: S Cranberry Blvd 8	US 41

	•	×	7	F	×	1	7	1	٤	×	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	SWL	SWT	SWR	
Lane Configurations	16.54	^	7	Ä	ተተተ	*	*	fə	*	†	77.75	
Traffic Volume (vph)	533	1668	121	155	1308	145	125	138	130	105	318	
Future Volume (vph)	533	1668	121	155	1308	145	125	138	130	105	318	
Lane Group Flow (vph)	561	1756	127	187	1377	153	132	223	137	111	335	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	pt+ov	
Protected Phases	5	2		1	6		3	8	7	4	4 5	
Permitted Phases			2			6	8		4			
Detector Phase	5	2	2	1	6	6	3	8	7	4	4 5	
Switch Phase												
Minimum Initial (s)	5.0	20.0	20.0	5.0	20.0	20.0	5.0	7.0	5.0	7.0		
Minimum Split (s)	13.6	27.6	27.6	13.0	27.6	27.6	12.5	25.5	12.5	25.5		
Total Split (s)	66.0	92.0	92.0	35.0	61.0	61.0	19.0	34.0	19.0	34.0		
Total Split (%)	36.7%	51.1%	51.1%	19.4%	33.9%	33.9%	10.6%	18.9%	10.6%	18.9%		
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.5	4.5	4.5	4.5		
All-Red Time (s)	3.0	2.0	2.0	2.4	2.0	2.0	3.0	3.0	3.0	3.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	8.6	7.6	7.6	8.0	7.6	7.6	7.5	7.5	7.5	7.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None	None	None		
v/c Ratio	0.82	0.63	0.15	0.82	0.63	0.20	0.49	0.89	0.77	0.43	0.29	
Control Delay (s/veh)	78.8	34.7	4.1	103.4	43.0	3.4	62.9	105.3	84.0	76.1	23.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	78.8	34.7	4.1	103.4	43.0	3.4	62.9	105.3	84.0	76.1	23.8	
Queue Length 50th (ft)	330	514	0	218	473	0	127	246	132	121	96	
Queue Length 95th (ft)	381	577	40	310	567	36	195	#391	#228	191	131	
Internal Link Dist (ft)		813			1018			411		404		
Turn Bay Length (ft)	700		365	365		410	120					
Base Capacity (vph)	1105	2797	864	266	2194	782	273	269	179	276	1445	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.51	0.63	0.15	0.70	0.63	0.20	0.48	0.83	0.77	0.40	0.23	

Cycle Length: 180

Actuated Cycle Length: 180

Offset: 157 (87%), Referenced to phase 2:SET and 6:NWT, Start of Yellow


Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: S Cranberry Blvd & US 41

Timings 03/14/2025

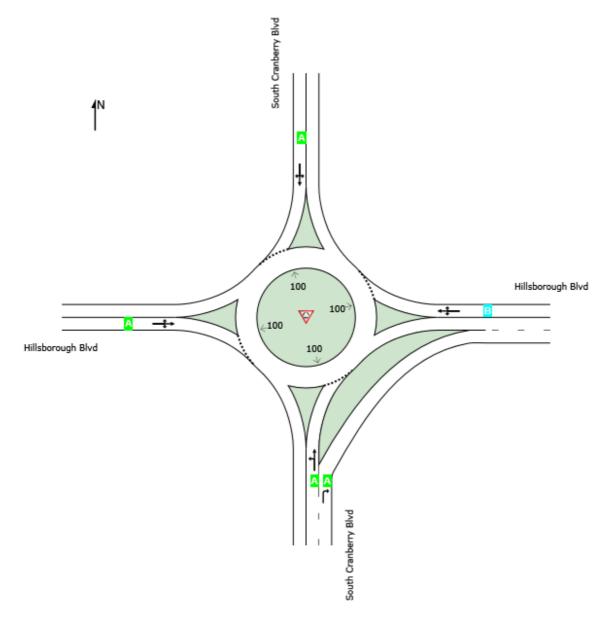
	4	×	Ţ	•	7	×	(7	*	~	Ĺ	¥
Movement	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT
Lane Configurations	J. J.	^	*		Ä	^	*	*	e‡		*	
Traffic Volume (veh/h)	533	1668	121	23	155	1308	145	125	138	74	130	105
Future Volume (veh/h)	533	1668	121	23	155	1308	145	125	138	74	130	105
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00		1.00		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No				No			No			No
Adj Sat Flow, veh/h/ln	1885	1870	1885		1900	1885	1885	1885	1841	1900	1870	1885
Adj Flow Rate, veh/h	561	1756	100		163	1377	79	132	145	71	137	111
Peak Hour Factor	0.95	0.95	0.95		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	2	1		0	1	1	1	4	0	2	1
Cap, veh/h	626	2971	846		184	2305	716	251	158	77	168	255
Arrive On Green	0.18	0.53	0.53		0.10	0.45	0.45	0.06	0.14	0.14	0.06	0.14
Sat Flow, veh/h	3483	5611	1598		1810	5147	1598	1795	1167	571	1781	1885
Grp Volume(v), veh/h	561	1756	100		163	1377	79	132	0	216	137	111
Grp Sat Flow(s), veh/h/ln	1742	1870	1598		1810	1716	1598	1795	0	1738	1781	1885
Q Serve(g_s), s	28.3	38.6	5.7		16.0	36.3	5.2	11.4	0.0	22.1	11.5	9.7
Cycle Q Clear(g_c), s	28.3	38.6	5.7		16.0	36.3	5.2	11.4	0.0	22.1	11.5	9.7
Prop In Lane	1.00	0074	1.00		1.00	0005	1.00	1.00	0	0.33	1.00	055
Lane Grp Cap(c), veh/h	626	2971	846		184	2305	716	251	0	235	168	255
V/C Ratio(X)	0.90	0.59	0.12		0.89	0.60	0.11	0.53	0.00	0.92	0.81	0.44
Avail Cap(c_a), veh/h	1111	2971	846		271	2305	716	251	1.00	256	168	278
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00 72.2	1.00	1.00		1.00 79.9	1.00 37.5	1.00	1.00	0.00	1.00 76.9	1.00	1.00
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	5.0	0.9	0.3		20.6	1.2	28.9	62.6 2.0	0.0	34.0	25.4	71.5 1.2
Initial Q Delay(d3), s/veh	0.0	0.9	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%), veh/ln	18.9	24.1	4.0		13.2	21.7	3.7	9.2	0.0	17.8	10.8	8.4
Unsig. Movement Delay, s/veh		24.1	4.0		13.2	21.7	3.7	7.2	0.0	17.0	10.0	0.4
LnGrp Delay(d), s/veh	77.2	29.9	21.5		100.5	38.6	29.2	64.6	0.0	110.9	90.3	72.7
LnGrp LOS	E	C C	C C		F	D	C C	E	0.0	F	70.5 F	F
Approach Vol, veh/h	_	2417	<u> </u>			1619	<u> </u>		348			341
Approach Delay, s/veh		40.5				44.4			93.4			71.9
Approach LOS		40.5 D				44.4 D			73.4 F			7 1. 5
									'			
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	26.3	102.9	19.0	31.8	40.9	88.2	19.0	31.8				
Change Period (Y+Rc), s	8.0	7.6	7.5	7.5	8.6	7.6	7.5	7.5				
Max Green Setting (Gmax), s	27.0	84.4	11.5	26.5	57.4	53.4	11.5	26.5				
Max Q Clear Time (g_c+I1), s	18.0	40.6	13.4	11.7	30.3	38.3	13.5	24.1				
Green Ext Time (p_c), s	0.3	32.6	0.0	0.7	2.0	11.6	0.0	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			48.0									
HCM 7th LOS			D									
Notes												
User approved ignoring U-Turr	ning mov	ement.										

Movement	SWR
Lane Configurations	77.77
Traffic Volume (veh/h)	318
Future Volume (veh/h)	318
Initial Q (Qb), veh	0
Lane Width Adj.	1.00
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1870
Adj Flow Rate, veh/h	93
Peak Hour Factor	0.95
Percent Heavy Veh, %	2
Cap, veh/h	878
Arrive On Green	0.14
Sat Flow, veh/h	2790
Grp Volume(v), veh/h	93
Grp Sat Flow(s), veh/h/ln	1395
Q Serve(q_s), s	4.3
Cycle Q Clear(g_c), s	4.3
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	878
V/C Ratio(X)	0.11
Avail Cap(c_a), veh/h	912
HCM Platoon Ratio	1.00
Upstream Filter(I)	1.00
Uniform Delay (d), s/veh	43.7
Incr Delay (d2), s/veh	0.1
Initial Q Delay(d3), s/veh	0.0
%ile BackOfQ(95%),veh/ln	2.7
Unsig. Movement Delay, s/veh	
LnGrp Delay(d), s/veh	43.8
LnGrp LOS	D
Approach Vol, veh/h	
Approach Delay, s/veh	
Approach LOS	
Timer - Assigned Phs	

Intersection															
Int Delay, s/veh	3.4														
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		Ž	የ			ă	444				7			7	
Traffic Vol, veh/h	14	94	1776	10	4	45	1538	72	0	0	43	0	0	116	
Future Vol, veh/h	14	94	1776	10	4	45	1538	72	0	0	43	0	0	116	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	-	None	-	-	-	None	-	-	None	-	-	None	
Storage Length	-	400	-	-	-	400	-	-	-	-	0	-	-	0	
Veh in Median Storage,	,# -	-	0	-	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	-	0	-	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	0	2	2	0	0	0	1	10	0	0	0	0	0	6	
Mvmt Flow	15	99	1869	11	4	47	1619	76	0	0	45	0	0	122	
Major/Minor N	/lajor1			<u> </u>	Major2			N	/linor1			Minor2			
Conflicting Flow All	1237	1695	0	0	1372	1880	0	0	-	-	940	-	-	847	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy	5.6	5.34	-	-	5.6	5.3	-	-	-	-	7.1	-	-	7.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	2.3	3.12	-	-	2.3	3.1	-	-	-	-	3.9	-	-	3.96	
Pot Cap-1 Maneuver	331	178	-	-	278	147	-	-	0	0	230	0	0	255	
Stage 1	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	-	-	-	0	0	-	0	0	-	
Platoon blocked, %			-	-			-	-							
Mov Cap-1 Maneuver	177	177	-	-	151	151	-	-	-	-	230	-	-	255	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Approach	SE				NW				NE			SW			
HCM Control Delay, s/v	3.18				1.2				24.4			31.35			
HCM LOS									С			D			
Minor Lane/Major Mvm	t N	VELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1						
Capacity (veh/h)		230	151	-	-	177	-	-	255						
HCM Lane V/C Ratio		0.196		_		0.641	_		0.478						
HCM Control Delay (s/v		24.4	40.6	-	-	55.7	-	-	31.4						
HCM Lane LOS	-	С	E			F	_	_	D						
HCM 95th %tile Q(veh)		0.7	1.4			3.7			2.4						

Intersection						
Int Delay, s/veh	0.2					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations			ተተጉ			7
Traffic Vol, veh/h	0	1894	1627	42	0	35
Future Vol, veh/h	0	1894	1627	42	0	35
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, #	# -	0	0	_	0	-
Grade, %	_	0	0	_	0	_
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	0	2	1	2	0	2
Mvmt Flow	0	1973	1695	44	0	36
IVIVIIIL FIOW	U	1973	1095	44	U	30
Major/Minor Ma	ajor1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	-	0	-	869
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	_	-	_	_	_
Critical Hdwy Stg 2	-	-	_	_	_	_
Follow-up Hdwy	_	_	_	_	-	3.92
Pot Cap-1 Maneuver	0	_	_	_	0	253
Stage 1	0	_	_	_	0	233
Stage 2	0			-	0	-
Platoon blocked, %	U		-		U	-
		-	-	-		252
Mov Cap-1 Maneuver	-	-	-	-	-	253
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	SE		NW		SW	
HCM Control Delay, s/v	0		0		21.58	
HCM LOS	U		U		C	
TICIVI LOS					C	
Minor Lane/Major Mvmt		NWT	NWR	SETS	WLn1	
Capacity (veh/h)		-	-	-	253	
HCM Lane V/C Ratio		-	-	-	0.144	
HCM Control Delay (s/ve	h)	_	-	_		
HCM Lane LOS	,				С	
HCM 95th %tile Q(veh)		_	_		0.5	

LANE LEVEL OF SERVICE


Lane Level of Service

♥ Site: 1 [2026 Buildout PM (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None)

Roundabout

		Appro	aches		Intersection
	South	East	North	West	Intersection
LOS	Α	В	Α	Α	Α

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Thursday, March 13, 2025 6:53:57
PM

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \SIDRA\Project2.sip9

MOVEMENT SUMMARY

♥ Site: 1 [2026 Buildout PM (Site Folder: General)]Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Huge Blvd Mixed Use Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce		_								
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] ft	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
South	ı: Sout	h Cranbe	rry Blvc												
3	L2	All MCs	61	2.0	61	2.0	0.419	6.6	LOSA	2.6	65.8	0.27	0.10	0.27	32.3
8	T1	All MCs	490	1.0	490	1.0	0.419	6.5	LOSA	2.6	65.8	0.27	0.10	0.27	33.0
18	R2	All MCs	336	0.0	336	0.0	0.201	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	36.7
Appro	oach		887	0.7	887	0.7	0.419	4.1	LOSA	2.6	65.8	0.17	0.06	0.17	34.2
East:	Hillsbo	orough Bl	vd												
1	L2	All MCs	251	4.0	251	4.0	0.452	11.3	LOS B	2.7	68.6	0.71	0.67	0.93	30.4
6	T1	All MCs	33	0.0	33	0.0	0.452	10.5	LOS B	2.7	68.6	0.71	0.67	0.93	31.4
16	R2	All MCs	40	7.0	40	7.0	0.452	11.8	LOS B	2.7	68.6	0.71	0.67	0.93	30.4
Appro	oach		324	4.0	324	4.0	0.452	11.3	LOS B	2.7	68.6	0.71	0.67	0.93	30.5
North	: Soutl	n Cranbei	rry Blvd												
7	L2	All MCs	25	0.0	25	0.0	0.396	8.1	LOSA	2.1	54.1	0.59	0.42	0.59	31.7
4	T1	All MCs	333	1.0	333	1.0	0.396	8.2	LOSA	2.1	54.1	0.59	0.42	0.59	32.4
14	R2	All MCs	18	0.0	18	0.0	0.396	8.1	LOSA	2.1	54.1	0.59	0.42	0.59	32.1
Appro	oach		376	0.9	376	0.9	0.396	8.2	LOSA	2.1	54.1	0.59	0.42	0.59	32.3
West	Hillsb	orough B	lvd												
5	L2	All MCs	24	5.0	24	5.0	0.087	6.5	LOSA	0.3	8.6	0.57	0.49	0.57	22.8
2	T1	All MCs	22	0.0	22	0.0	0.087	5.7	LOSA	0.3	8.6	0.57	0.49	0.57	22.9
12	R2	All MCs	16	0.0	16	0.0	0.087	5.7	LOSA	0.3	8.6	0.57	0.49	0.57	22.9
Appro	oach		62	1.9	62	1.9	0.087	6.0	LOSA	0.3	8.6	0.57	0.49	0.57	22.9
All Ve	hicles		1649	1.4	1649	1.4	0.452	6.5	LOSA	2.7	68.6	0.39	0.28	0.43	32.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise Level 2 | Processed: Thursday, March 13, 2025 6:53:57 PM

Project: K:\TAM_TPTO\147000004 - Fuccillo Mixed Use - Charlotte County\2022 - Fuccillo Port Charlotte - Clint Conway\Analysis\Synchro \SIDRA\Project2.sip9

APPENDIX E: Growth Rate Calculations

Project: Fuccillo Mixed Use Location: S Cranberry Boulevard & Tamiami Trail

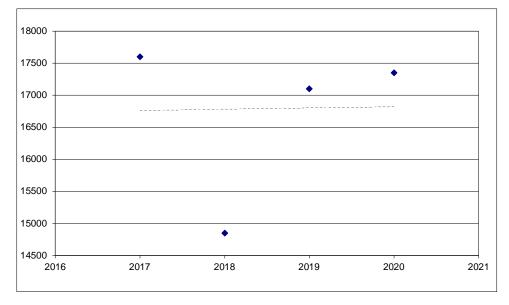
Notes: FDOT Historical AADT

Volume Source #1: 4124 - CHANCELLOR BLVD, EAST OF FOUNTAIN ST Volume Source #2: 0048 - SR 45/US 41, 600' W OF N TOLEDO BLADE/CR39

Volume Source #3: Volume Source #4: Volume Source #5:

Line 1	Month	Year 2020	Volume Source #1 5700	Volume Source #2 29000	Volume Source #3	Volume Source #4	Volume Source #5	Average Volume 17350
2		2019	5700	28500				17100
3		2018	5200	24500				14850
4		2017	3700	31500				17600
5		2016	3500	30500				17000
6								
7								
8								
9								
10								

	INI	PUT DATA			OUTPU	T DATA	
			Aggregate				Best Fit
			Traffic				Volume
Line	Month	Year	Volume	Line	Month	Year	Trend
1		2020	17350	1		2020	16820
2		2019	17100	2		2019	16800
3		2018	14850	3		2018	16780
4		2017	17600	4		2017	16760
5		2016	17000	5		2016	16740
6				6			
7				7			
8				8			
9				9			
10				10			


Slope: 20 Intercept: -23580 R²: 0.00082085

Standard Error: 1273.970172

Exponential

Growth Rate: 0.12% Future = Existing (1+Growth)^N

Linear Growth Rate: 0.12% Future = Existing (1+Growth*N)

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2020 HISTORICAL AADT REPORT

COUNTY: 01 - CHARLOTTE

SITE: 0048 - SR 45/US 41, 600' W OF N TOLEDO BLADE/CR39 CH22

YEAR	AADT	DIF	RECTION 1	DI	RECTION 2	*K F	ACTOR	D FAC'	TOR	T FACTO	R
											_
2020	29000 C	W	14500	\mathbf{E}	14500		9.00	52	.00	4.4	0
2019	28500 C	W	14000	E	14500		9.00	52	.00	4.4	0
2018	24500 C	W	12000	E	12500		9.00	52	.50	4.1	0
2017	31500 S	W	15500	E	16000		9.00	52	.20	3.9	0
2016	30500 F	W	15000	E	15500		9.00	56	.90	3.9	0
2015	29500 C	W	14500	E	15000		9.00	53	.60	3.9	0
2014	27500 C	W	13500	\mathbf{E}	14000		9.00	52	.60	4.0	0
2013	28500 C	W	14000	E	14500		9.00	52	.60	3.9	0
2012	29000 C	W	14500	E	14500		9.00	53	.30	4.4	0
2011	31500 C	W	15500	\mathbf{E}	16000		9.00	53	.50	3.4	0
2010	31000 C	W	15000	E	16000		10.32	53	.30	3.4	0
2009	31500 C	W	15500	E	16000		10.43	54	.01	3.4	0
2008	28500 C	W	14000	E	14500		10.61	53	.94	3.8	0
2007	31000 C	W	15500	E	15500		10.17	54	.96	2.8	0
2006	34500 C	W	17000	E	17500		9.78	53	.48	5.5	0
2005	34000 C	W	17000	E	17000		9.90	55	.00	4.1	0

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2020 HISTORICAL AADT REPORT

COUNTY: 01 - CHARLOTTE

SITE: 4124 - CHANCELLOR BLVD, EAST OF FOUNTAIN ST CC 124

YEAR	AADT	DIRECTION 1		DIF	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2020	5700 F	E	2900	W	2800	9.00	52.50	10.30
2019	5700 C	E	2900	W	2800	9.00	52.50	4.90
2018	5200 C	E	2600	W	2600	9.00	53.50	5.00
2017	3700 T					9.00	52.50	4.10
2016	3500 S	E	1800	W	1700	9.00	52.80	3.80
2015	3300 F	E	1700	W	1600	9.00	53.70	3.80
2014	3100 C	E	1600	W	1500	9.00	53.10	3.80
2013	2300 S	E	1200	W	1100	9.00	53.10	3.10
2012	2300 F	E	1200	W	1100	9.00	53.30	3.10
2011	2300 C	E	1200	W	1100	9.00	53.40	3.10
2010	2300 S	E	1200	W	1100	10.33	53.58	3.90
2009	2300 F	E	1200	W	1100	10.66	52.85	3.90
2008	2500 C	E	1300	W	1200	10.83	53.49	3.90

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

APPENDIX F: Volume Development Intersection Sheets

INTERSECTION:

S Cranberry Blvd & US 41 February 19, 2025

COUNT DATE: AM PEAK HOUR FACTOR:

A			0.0
PM PEAK	HOUR	FACTOR:	0.9

"AM EXISTING TRAFFIC" AM Raw Turning Movements		EBU	EBL	EBT (1)	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Raw Turni	ng Movements	3	162	951	104	13	106	1,147	77	0	113	46	100	0	129	104	386
Peak Season C	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM EXISTING	CONDITIONS	3	162	951	104	13	106	1,147	77	0	113	46	100	0	129	104	386
	NG TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	ng Movements	6	450	1,630	119	23	152	1,243	142	0	123	114	68	0	95	84	301
Peak Season C	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DM EVICTING	CONDITIONS			1													
PM EXISTING	CONDITIONS	6	450	1,630	119	23	152	1,243	142	0	123	114	68	0	95	84	301
"AM DACKODO	OUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3BK
		2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
Yearly Growth Rate AM BACKGROUND TRAFFIC GROWTH		0	3	19	2.0%	0	2.0%	2.0%	2.0%	0	2.0%	1	2.0%	0	3	2.0%	8
ANI BACKGROUND	TRAFFIC GROWTH	U	3	19		U		23	2	U				U	3		0
AM NON-PRO	JECT TRAFFIC	3	165	970	106	13	108	1.170	79	0	115	47	102	0	132	106	394
"PM BACKGRO	OUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gr	owth Rate	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
PM BACKGROUND	TRAFFIC GROWTH	0	9	33	2	0	3	25	3	0	2	2	1	0	2	2	6
PM NON-PRO	JECT TRAFFIC	6	459	1,663	121	23	155	1,268	145	0	125	116	69	0	97	86	307
	STRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New Distribution	Entering Exiting		40.0%	3.0%				04.00/				13.0%	3.0%		00.00/	40.00/	0.00/
Distribution	Exiting							34.0%							28.0%	16.0%	9.0%
"AM DDO IE	CT TRAFFIC"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project	Pass - Bv	LBU		1	LDI	1100	T T T	1101	WER	NBO	INDL	1401	NDI	ODO	JUL	J 55 1	JUN
Trips	Net New		66	5				76				22	5		63	36	20
	OJECT TRAFFIC	0	66	5	0	0	0	76	0	0	0	22	5	0	63	36	20
7 1017.211.0			- 00	_ <u> </u>			_ <u> </u>						_ <u> </u>				
AM TOTAL	L TRAFFIC	3	231	975	106	13	108	1,246	79	0	115	69	107	0	195	142	414
"PM PROJE	CT TRAFFIC"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
																	ODIN
Trips	Net New		68	5				40				22	5		33	19	11
	Net New DJECT TRAFFIC		68 68	5 5				40 40				22 22	5 5		33 33	19 19	
PM TOTAL PRO		6		+	121	23	155		145	0	125		_	0			11

INTERSECTION: COUNT DATE:

Huge Blvd & US 41 February 19, 2025

AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR:

0.99 0.95

"AM FYISTI	NG TRAFFIC"	EBU	EBL	EBT (1)	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	ng Movements	6	31	1,140	9	5	25	1,267	17	I I	l l	1101	28	I	l ODE	<u> </u>	56
	orrection Factor	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM EXISTING	CONDITIONS	6	31	1,140	9	5	25	1,267	17				28				56
"PM EXISTIN	NG TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Raw Turni	ng Movements	14	82	1,709	10	4	44	1,522	10				42				53
Peak Season C	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PM EXISTING	CONDITIONS	14	82	1,709	10	4	44	1,522	10				42			<u> </u>	53
"AM DACKODO	NIND TO AFFICE	EBU	EDI	CDT	EBR	WDII	WDI	WDT	WDD	NBU	NDI	NDT	NDD	SBU	CDI	SBT	CDD
	OUND TRAFFIC" Buildout	1	EBL 1	EBT 1		WBU 1	WBL	WBT	WBR	NBU 1	NBL	NBT 1	NBR		SBL 1	361	SBR
		2.0%		2.0%	2.0%		2.0%	2.0%	2.0%	2.0%	2.0%		2.0%	2.0%		2.0%	1
	Yearly Growth Rate AM BACKGROUND TRAFFIC GROWTH		2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
AW BACKGROUND	TRAFFIC GROWTH	0		23	U	U		23	U		l .			l .	l .		
AM NON-PRO	JECT TRAFFIC	6	32	1.163	9	5	26	1.292	17				29				57
				.,,				,		I.	I			I	I		
"PM BACKGRO	OUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gr	owth Rate	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
PM BACKGROUND	TRAFFIC GROWTH	0	2	34	0	0	1	30	0				1				1
PM NON-PRO	JECT TRAFFIC	14	84	1,743	10	4	45	1,552	10				43				54
	STRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering			<u> </u>				-67%	67%								
Distribution	Exiting			<u> </u>				L	L								67%
Net New	Entering		6%					14%	14%								
Distribution	Exiting			28%													20%
"AM DDO IE	CT TRAFFIC"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project	Pass - Bv	LBU	LBL	LDI	LBK	WBU	VVBL	-38	38	NBU	NDL	INDI	NDK	360	JBL	361	38
Trips	Net New		10	63				23	23							-	45
	DJECT TRAFFIC	0	10	63	0	0	0	-15	61				0				83
AMIOTALING	JOEOT TRAITIO			- 00		_ •	_ •	-10	0.	l	l		_ •	l .	l .		- 00
AM TOTA	L TRAFFIC	6	42	1,226	9	5	26	1,277	78				29				140
						•	•				•		•	•	•		•
"PM PROJE	CT TRAFFIC"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Trips	Net New		10	33				24	24								24
PM TOTAL PRO	DJECT TRAFFIC		10	33				-14	62								62
PM TOTA	L TRAFFIC	14	94	1,776	10	4	45	1,538	72	1			43			1	116

INTERSECTION:

S Cranberry Blvd & Hillsborough Blvd February 19, 2025

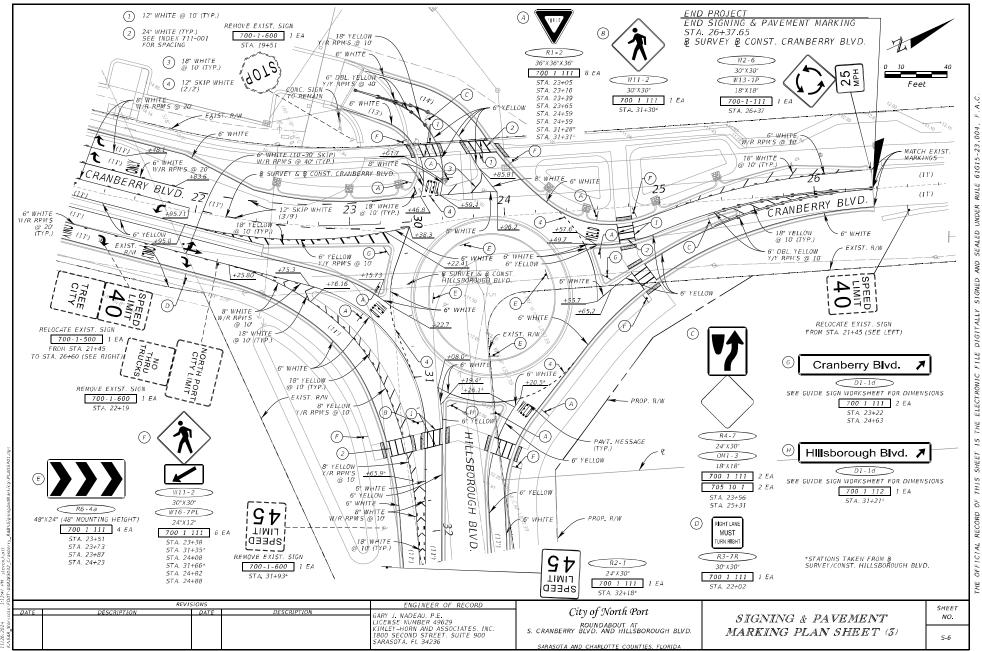
COUNT DATE:

AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR:

0.87

"AM EXISTIN	O TDAFFIOI	EBU	EBL	EBT (1)	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Raw Turnir		EBU	22	14	28	WBU	134	19	21	NDU	46	199	77	360	24	468	41
Peak Season Co		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
i eak deason de	inection i actor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM EXISTING	CONDITIONS		22	14	28		134	19	21		46	199	77		24	468	41
"PM EXISTIN		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Raw Turnir			22	20	15		165	29	28		55	442	215		11	300	17
Peak Season Co	prrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PM EXISTING	CONDITIONS		22	20	15		165	29	28		55	442	215		11	300	17
"AM BACKGRO	UND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gro	owth Rate	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
AM BACKGROUND	AM BACKGROUND TRAFFIC GROWTH		0	0	1		3	0	0		1	4	2		0	9	1
AM NON-PROJ	ECT TRAFFIC		22	14	29	1	137	19	21		47	203	79		24	477	42
AM NON-1 NOO	LOT IIIAITIO		22	14	23	l .	137	13	21		47	203	13		24	4//	42
"PM BACKGRO	UND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gro	owth Rate	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
PM BACKGROUND	TRAFFIC GROWTH		0	0	0		3	1	1		1	9	4		0	6	0
PM NON-PROJ	IFOT TO A FFIC		22	20	15	1	168	30	29		56	451	219		11	306	17
FINI NON-FROS	ECT TRAFFIC		22	20	15	l	168	30	29		36	451	219		11	306	17
"PROJECT DIS	STRUBUTION"																
LAND USE	TYPE	EBU							WDD	NBU							
Pass-Bv			EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass-By Entering		EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Distribution	Entering Exiting		EBL	EBT	EBR	WBU	WBL	WBT	WBK	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Distribution Net New			EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR 53%	SBU	SBL 7%	SBT	SBR
	Exiting	EBO	EBL	EBT	EBR	WBU	WBL 53%	WBT	7%	NBU	NBL	NBT		SBU		SBT	SBR
Net New Distribution	Exiting Entering Exiting	LBO	EBL	EBT	EBR	WBU		WBT		NBU	NBL	NBT		SBU		SBT	SBR
Net New Distribution "AM PROJEC	Exiting Entering Exiting EXIT TRAFFIC"						53%		7%				53%		7%		
Net New Distribution "AM PROJECTION LAND USE	Exiting Entering Exiting CT TRAFFIC" TYPE	EBU	EBL	EBT	EBR	WBU		WBT		NBU	NBL	NBT		SBU		SBT	SBR
Net New Distribution "AM PROJEC LAND USE Project	Exiting Entering Exiting ET TRAFFIC" TYPE Pass - By						53% WBL		7% WBR				53% NBR		7%		
Net New Distribution "AM PROJEC LAND USE Project Trips	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New		EBL	EBT	EBR		53% WBL	WBT	7% WBR		NBL	NBT	53% NBR		7% SBL	SBT	SBR
Net New Distribution "AM PROJEC LAND USE Project	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New						53% WBL		7% WBR				53% NBR		7%		
Net New Distribution "AM PROJEC LAND USE Project Trips	Exiting Entering Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC		EBL	EBT	EBR		53% WBL	WBT	7% WBR		NBL	NBT	53% NBR		7% SBL	SBT	SBR
Net New Distribution "AM PROJEC LAND USE Project Trips AM TOTAL PRO	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC TRAFFIC		EBL	EBT	EBR		53% WBL 119	WBT	7% WBR 16 16		NBL 0	NBT 0	53% NBR 88		7% SBL 12 12	SBT	SBR
Net New Distribution "AM PROJECT LAND USE Project Trips AM TOTAL PRO	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC TRAFFIC		EBL	EBT	EBR		53% WBL 119	WBT	7% WBR 16 16		NBL 0	NBT 0	53% NBR 88		7% SBL 12 12	SBT	SBR
Net New Distribution "AM PROJECT LAND USE Project Trips AM TOTAL PRO AM TOTAL "PM PROJECT PM PROJECT "PM PM PROJECT "PM PM P	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC TRAFFIC CT TRAFFIC	EBU	EBL 0	EBT 0	EBR 0	WBU	53% WBL 119 119 256	WBT 0	7% WBR 16 16 37	NBU	NBL 0 47	NBT 0	53% NBR 88 88 167	SBU	7% SBL 12 12 36	SBT 0	SBR 0
Net New Distribution "AM PROJECT LAND USE Project Trips AM TOTAL PRO AM TOTAL "PM PROJECT LAND USE	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC TRAFFIC CT TRAFFIC" TYPE Net New Net New	EBU	EBL 0	EBT 0	EBR 0	WBU	53% WBL 119 119 256 WBL	WBT 0	7% WBR 16 16 37	NBU	NBL 0 47	NBT 0 203	53% NBR 88 88 167	SBU	7% SBL 12 12 36 SBL	SBT 0	SBR 0
Net New Distribution "AM PROJEC LAND USE Project Trips AM TOTAL PRO AM TOTAL "PM PROJEC LAND USE Trips	Exiting Entering Exiting Exiting CT TRAFFIC" TYPE Pass - By Net New JECT TRAFFIC TRAFFIC CT TRAFFIC TYPE Net New JECT TRAFFIC	EBU	EBL 0	EBT 0	EBR 0	WBU	53% WBL 119 119 256 WBL 63	WBT 0	7% WBR 16 16 37 WBR 8	NBU	NBL 0 47	NBT 0 203	53% NBR 88 88 167 NBR 90	SBU	7% SBL 12 12 36 SBL 12	SBT 0	SBR 0

INTERSECTION: COUNT DATE:


Driveway 1 & US 41 February 19, 2025

AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR:

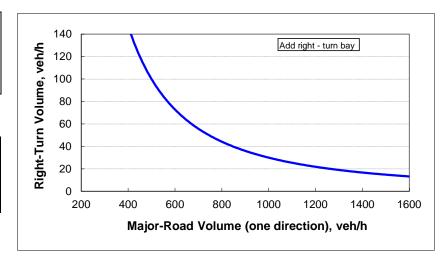
0.99 0.99

"AM EXISTIN	IG TRAFFIC"	EBU	EBL	EBT (1)	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Raw Turnii	ng Movements			1,186				1,329									
Peak Season Co	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
AM EXISTING	CONDITIONS			1.186				1.329									
				.,				.,		1							
"PM EXISTIN	IG TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Raw Turnir				1,815				1,589									
Peak Season Co	orrection Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PM EXISTING	CONDITIONS			1,815				1,589									
"AM BACKGRO	UND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To	Buildout	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gro	owth Rate	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
AM BACKGROUND	AM BACKGROUND TRAFFIC GROWTH			24				27									
AM NON-PROJ	IECT TRAFFIC			1,210				1,356									
AW NON-PROS	JECT TRAFFIC			1,210				1,336		l .							
"PM BACKGRO		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Years To		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Yearly Gro		2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
PM BACKGROUND	TRAFFIC GROWTH			36				32		<u> </u>							
PM NON-PROJ	IECT TRAFFIC			1,851				1,621									
•										•							
"PROJECT DIS	STRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering							-33.0%	33.0%								
Distribution	Exiting																33.0%
Net New	Entering			6.0%					14.0%								
Distribution	Exiting			28.0%				20.0%									14.0%
"AM DDO IE	T TD A FFIOT																
"AM PROJEC LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project	Pass - By	LBU	LDL	LDI	LDK	WBU	WDL	-18	18	NBU	NDL	NDI	MDI	360	JBL	361	18
Trips	Net New			73				45	23								31
AM TOTAL PRO				73				27	41								49
7 1017.21110		1															-10
AM TOTAL	. TRAFFIC			1,283				1,383	41								49
"PM PROJEC																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Trips	Net New			43				24	24	ļ							17
PM TOTAL PRO	JECT TRAFFIC			43				6	42	l							35
PM TOTAL	TRAFFIC			1.894				1,627	42	1							35
THITOTAL		I		.,554				.,521									- 55

APPENDIX G Roundabout Plans

APPENDIX H Turn Lane Documentation

Northbound Right-Turn Lane at US 41 and Driveway 1


Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

INPUT

Roadway geometry:		
Variable		Value
Major-road speed, mph:		45
Major-road volume (one direction), veh/h:		1641
Right-turn volume, veh/h:		42

OUTPUT

Variable	Value		
Limiting right-turn volume, veh/h:	13		
Guidance for determining the need for a major-road			
right-turn bay for a 4-lane roadway:			
Add right-turn bay.			

NARRATIVE FOR MAJOR MODIFICATION TO PLANNED DEVELOPMENT (PD) REZONING

FOR JBCC DEVELOPMENT, LLC

This is a request for a major modification to the approved Planned Development (PD) at the intersection of US 41/Cranberry/Hillsborough in northern Charlotte County. The property currently has a Future Land Use Map designation of US 41 Mixed Use.

The project will be a mix of residential and commercial uses. Approval has been granted for the residential portion of the PD, for 333 multifamily dwelling units (DRC-23-00163), which is currently under construction. The approved construction covers the entire PD site based on the overall stormwater system for the property. This major modification is to revise the current PD concept plan. A Chick-fil-A restaurant and Tommy's Car Wash are seeking Detail PD concept approval, and the balance of the Commercial will seek PD concept plan approval, and come back to the BCC for final Detail approval.

This request meets the zoning standards of approval as follows:

- 1. The proposed change is consistent with the comprehensive plan. The PD as proposed in the concept plan is consistent with the US 41 Mixed Use Future Land Use category. There are no comprehensive plan policies that would prohibit the PD to allow the proposed uses on this site.
- 2. The proposed Concept plan is consistent with the existing land use pattern in adjacent areas. Proposed buffering will ensure compatibility with surrounding uses.
- 3. There is sufficient capacity in all of the public infrastructure facilities and services to serve the project.
- 4. The proposed change will not adversely affect living conditions or property values in the adjacent areas. There are no existing residential uses abutting the property.
- 5. The proposed Concept Plan under the PD zoning will have no negative effect on public safety. There are adequate public facilities to serve the development.

Based on the foregoing, it is respectfully requested the small-scale plan amendment, PD rezoning and concept plan be approved as presented.

Dated: June 10, 2024

/s/ Robert H. Berntsson

Robert H. Berntsson

PROTECTED SPECIES ASSESSMENT

Cranberry Parcel Charlotte County, Florida

March 2022

Prepared by:

4050 Rock Creek Drive = Port Charlotte, FL 33948 (941) 457-6272 www.IVAenvironmental.com

INTRODUCTION

The following assessment has been prepared to identify on-site vegetative communities and address wildlife species listed by the Florida Fish and Wildlife Conservation Commission (FWC) and U.S. Fish and Wildlife Service (FWS) as endangered, threatened, or species of special concern which may be utilizing the subject property.

The subject property is located in Section 03, Township 40S, Range 21E in Port Charlotte, Florida. Please refer to the attached Location Map.

SITE CONDITIONS

A site inspection was conducted by a qualified staff ecologist in March 2022. During the inspection, temperatures ranged from 75° - 80° F, winds were 5-20 mph, and skies were cloudy to partly cloudy.

VEGETATIVE COMMUNITIES

Field observations, in conjunction with the Charlotte County Soil Survey and aerial photographs, were used to develop a map of the vegetative communities onsite. The following table displays the vegetative associations found on the subject property. The vegetative communities were identified and classified utilizing the Florida Land Use Cover and Forms Classification System (FLUCCS). A description of the communities is also included. Please refer to the attached Protected Species Assessment Map.

FLUCCS ID	FLUCCS DESCRIPTION	ACREAGE
425	Temperate Hardwoods	1.98
740	Disturbed Land	8.44
TOTAL		10.42

FLUCCS 425 – Temperate Hardwoods

This upland habitat contains a canopy of live oak (*Quercus virginiana*), cabbage palm (*Sabal palmetto*), and laurel oak (*Quercus laurifolia*). Midstory and groundcover species present include: grapevine (*Vitis sp.*), greenbrier (*Smilax sp.*), Brazilian pepper (*Schinus terebinthifolius*), St. Augustine grass (*Stenotaphrum secundatum*), poison ivy (*Toxicodendron radicans*), beautyberry (*Callicarpa americana*), bluestems (*Schizachyrium* and *Andropogon spp.*), cogon grass (*Imperata cylindrica*), and goldenrods (*Euthamia and Solidago spp.*).

FLUCCS 740 - Disturbed Land

This upland habitat had all native vegetation completely removed in 2016, and lacks a canopy. Midstory and groundcover species present include: bluestems, smutgrass (*Sporobolus indicus*), Mexican clover (*Richardia brasiliensis*), false buttonweed (*Spermacoce sp.*), Bahia grass (*Paspalum notatum*), finger grass (*Digitaria sp.*), goldenrods, lovegrass (*Eragrostis sp.*), carpetgrass (*Axonopus furcatus*), blackberry (*Rubus sp.*), beggar's tick (*Bidens alba*), dog fennel (*Eupatorium capillifolium*), cogongrass (*Imperata cylindrica*), blackroot (*Pterocaulon pycnostachyum*), and thistle (*Cirsium sp.*).

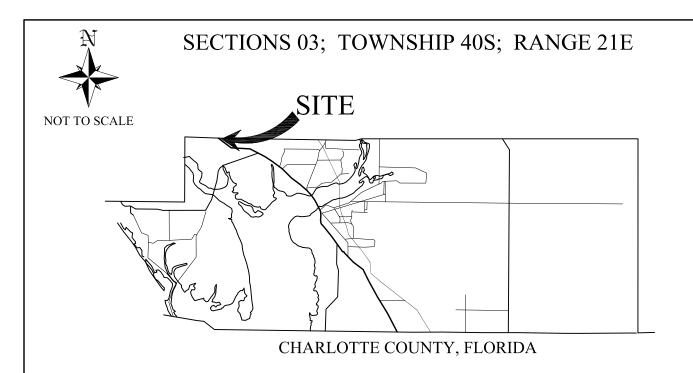
LISTED SPECIES SURVEY METHODOLOGY

To provide approximately 80% coverage of the site, both linear and nonlinear overlapping transects were completed across the parcel per FWC guidelines. Transects were spaced approximately 20 feet apart depending on the visibility within the vegetative association being surveyed. Evidence of protected species was gathered through both direct observation and through observation of signs such as tracks, nests, burrows, and fecal material. If evidence of utilization by a protected species which may require permitting prior to development of the subject property was observed, an aerial photograph was marked depicting the approximate location. In addition, a search of available online resources was conducted to reveal the previously documented presence of listed species which may be utilizing the subject property. These resources included, but were not limited to, the following: FWS Wood Stork Colony Map(s); Charlotte County Natural Resources Department Scrub Jay Territory Search Database; Audubon Eagle Nest Locator Database; FWS Florida Bonneted Bat Consultation Area Map(s); FWS Crested Caracara Consultation Area Map(s); FWS Red-cockaded Woodpecker Consultation Area Map(s); and FWS Panther Consultation Area Map(s). In the event that the site contained suitable habitat for a protected species, or if the site is within close proximity to a verified sighting or consultation area for a protected species, additional scrutiny was given during the inspection relative to that specific species.

LISTED SPECIES ASSESSMENT RESULTS

Search of available online resources revealed that the subject property is located within an 18.6-mile radius designated as Core Foraging Area of several wood stork (*Mycteria americana*) nesting colonies. Each of the documented colonies appears to be greater than 3 miles from the subject property. Under current regulations, the proximity of the off-site nesting colonies is not likely to affect the future development of the subject property.

Search of available online resources revealed that the subject property is located within the Consultation Area of the Florida scrub jay (*Aphelocoma coerulescens*). However, review of the Charlotte County Natural Resources Department Florida Scrub Jay Territory Search Database revealed that the subject property is not a scrub jay review area parcel. No evidence of utilization by the species was observed on the subject property. Therefore, the Florida scrub jay is not likely to affect the future development of the property.


Search of the Audubon Society Bald Eagle Nest Locator website revealed no nests within a one-mile radius of the subject property. No eagles or nests were observed on or around the subject property. Bald eagle should therefore not likely affect the future development of the subject property.

The subject parcel is located within the FWS Consultation Area of the Florida bonneted bat (*Eumops floridanus*). No evidence of utilization by the Florida bonneted bat was observed onsite during the site inspection. The Florida bonneted bat is therefore not likely to affect the future development of the subject property.

Search of available online resources did not reveal documentation of any other listed wildlife species currently utilizing the subject property.

The subject site contains upland habitats which are being utilized by the gopher tortoise (*Gopherus polyphemus*). One (1) potentially occupied gopher tortoise burrow was observed on the parcel. A 100% gopher tortoise survey and relocation permit from the Florida Fish and Wildlife Conservation Commission will be required prior to development of the site if gopher tortoise burrows cannot be avoided during construction.

No other protected species or evidence of protected species utilization which would require permits from the FWC or FWS were observed onsite during the site inspection.

CRANBERRY PARCEL

LOCATION MAP

SECTION 03; TOWNSHIP 40S; RANGE 21E

LEGEND

FLUCCS	DESCRIPTIONS	ACREAGE
425	TEMPERATE HARDWOODS	1.98±
740	DISTURBED LAND	$8.44\pm$
		TOTAL 10.42+

POTENTIALLY OCCUPIED GOPHER TORTOISE BURROW (1)

- 1. FOR PERMIT USE ONLY, NOT FOR CONSTRUCTION. 2. PROJECT BOUNDARY IS APPROXIMATE AND WAS OBTAINED FROM
- 3. MAPPING APPROXIMATE AND BASED ON INTERPRETATION OF 2017
- 4. THE DELINEATION OF ANY ON-SITE WETLANDS, SURFACE WATERS, AND/OR OTHER SURFACE WATERS IS PRELIMINARY AND SUBJECT TO REVIEW/APPROVAL BY APPLICABLE REGULATORY AGENCIES.

22-103 / MARCH 10, 2022

CRANBERRY PARCEL PROTECTED SPECIES ASSESSMENT MAP

